grazi3
Answered

Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

Determine m de modo que o valor máximo da função f(x)=(m-3)x²+8x-1 seja 3

Sagot :

Para que o ponto maximo da funcao seja 3, m=11.

Toda expressao na forma y = ax² + bx + c ou f(x) = ax² + bx + c, com a, b e c numeros reais, sendo a ≠ 0, e chamada funcao do 2º grau.

A representação grafica de uma função do 2º grau e dada atraves de uma parabola, que pode ter a concavidade voltada para cima ou para baixo.

nesse caso, a concavidade e voltada para baixo e a<0.

Sendo assim,

Na equacao, m-3=a, b=8, c=-1

A coordenada Y do ponto maximo vale 3, ou seja, Yv=3

Mas temos que yv= -Δ/4a

[tex]y_{v} = - \frac{(b^{2}-4ac)}{4a}=-\frac{64-4*a*(-1)}{4a} = -\frac{64+4a}{4a} =-\frac{16+a}{a}[/tex]

Substituindo, temos

3=(16+a)/a

3a=16+a

2a=16

a=8

Como a=m-3

8=m-3

m=11

View image gustavoif
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.