grazi3
Answered

Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

Determine m de modo que o valor máximo da função f(x)=(m-3)x²+8x-1 seja 3

Sagot :

Para que o ponto maximo da funcao seja 3, m=11.

Toda expressao na forma y = ax² + bx + c ou f(x) = ax² + bx + c, com a, b e c numeros reais, sendo a ≠ 0, e chamada funcao do 2º grau.

A representação grafica de uma função do 2º grau e dada atraves de uma parabola, que pode ter a concavidade voltada para cima ou para baixo.

nesse caso, a concavidade e voltada para baixo e a<0.

Sendo assim,

Na equacao, m-3=a, b=8, c=-1

A coordenada Y do ponto maximo vale 3, ou seja, Yv=3

Mas temos que yv= -Δ/4a

[tex]y_{v} = - \frac{(b^{2}-4ac)}{4a}=-\frac{64-4*a*(-1)}{4a} = -\frac{64+4a}{4a} =-\frac{16+a}{a}[/tex]

Substituindo, temos

3=(16+a)/a

3a=16+a

2a=16

a=8

Como a=m-3

8=m-3

m=11

View image gustavoif
Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.