O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Explore milhares de perguntas e respostas de uma comunidade de especialistas dispostos a ajudar você a encontrar soluções. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Olá, Liziam.
Para ortonormalizar uma base devemos utilizar o Processo de Gram-Schmidt (neste caso, aplicado a polinômios) para ortogonalizá-la e, após, normalizá-la.
[tex]\{v_1(t),v_2(t),v_3(t)\}=\{1, 1 + t, 2t\²\}\\\\\boxed{u_1(t) = v_1(t) = 1}[/tex]
[tex]u_2(t) = v_2(t) - \frac{\overbrace{<v_2(t),u_1(t)>}^{\text{produto interno}}}{<u_1(t),u_1(t)>}\cdot u_1(t)=\\\\=v_2(t) - \frac{\int\limits_{-1}^{1}v_2(t)u_1(t)\,dt}{\int\limits_{-1}^{1}u_1(t)u_1(t)\,dt}\cdot u_1(t)=\\\\=1+t-\frac{\int\limits_{-1}^{1}(1+t)\cdot 1\,dt}{\int\limits_{-1}^{1}1\cdot1\,dt}\cdot1=\\\\=1+t-\frac{t|_{-1}^{1}+\frac{t^2}2|_{-1}^{1}}{t|_{-1}^{1}}=\\\\=1+t-\frac{1-(-1)+\frac12-\frac12}{1-(-1)}=\\\\=1+t-\frac22=[/tex]
[tex]\Rightarrow \boxed{u_2(t)=t}[/tex]
[tex]\boxed{u_3(t)=v_3(t) - \frac{<v_3(t),u_1(t)>}{<u_1(t),u_1(t)>}\cdot u_1(t) - \frac{<v_3(t),u_2(t)>}{<u_2(t),u_2(t)>}\cdot u_2(t)}[/tex]
O cálculo de [tex]u_3(t),[/tex] semelhante ao de [tex]u_2(t),[/tex] fica por sua conta. :)
Obtida a base de polinômios ortogonais [tex]\{u_1(t),u_2(t),u_3(t)\},[/tex] resta agora normalizá-la.
Para normalizar a base, cada um dos polinômios da base [tex]u_1(t),u_2(t),u_3(t)[/tex] deve ser dividido por sua norma.
A norma para polinômios é dada por:
[tex]||u||^2 = \int\limits_{-1}^1 [u(x)]^2\,dx[/tex]
Assim, a base ortonormalizada é dada por:
[tex]\{\frac{u_1(t)}{||u_1(t)||},\frac{u_2(t)}{||u_2(t)||},\frac{u_3(t)}{||u_3(t)||}\}[/tex]
Os cálculos relativos à normalização acima ficam também por sua conta. :)
Para ortonormalizar uma base devemos utilizar o Processo de Gram-Schmidt (neste caso, aplicado a polinômios) para ortogonalizá-la e, após, normalizá-la.
[tex]\{v_1(t),v_2(t),v_3(t)\}=\{1, 1 + t, 2t\²\}\\\\\boxed{u_1(t) = v_1(t) = 1}[/tex]
[tex]u_2(t) = v_2(t) - \frac{\overbrace{<v_2(t),u_1(t)>}^{\text{produto interno}}}{<u_1(t),u_1(t)>}\cdot u_1(t)=\\\\=v_2(t) - \frac{\int\limits_{-1}^{1}v_2(t)u_1(t)\,dt}{\int\limits_{-1}^{1}u_1(t)u_1(t)\,dt}\cdot u_1(t)=\\\\=1+t-\frac{\int\limits_{-1}^{1}(1+t)\cdot 1\,dt}{\int\limits_{-1}^{1}1\cdot1\,dt}\cdot1=\\\\=1+t-\frac{t|_{-1}^{1}+\frac{t^2}2|_{-1}^{1}}{t|_{-1}^{1}}=\\\\=1+t-\frac{1-(-1)+\frac12-\frac12}{1-(-1)}=\\\\=1+t-\frac22=[/tex]
[tex]\Rightarrow \boxed{u_2(t)=t}[/tex]
[tex]\boxed{u_3(t)=v_3(t) - \frac{<v_3(t),u_1(t)>}{<u_1(t),u_1(t)>}\cdot u_1(t) - \frac{<v_3(t),u_2(t)>}{<u_2(t),u_2(t)>}\cdot u_2(t)}[/tex]
O cálculo de [tex]u_3(t),[/tex] semelhante ao de [tex]u_2(t),[/tex] fica por sua conta. :)
Obtida a base de polinômios ortogonais [tex]\{u_1(t),u_2(t),u_3(t)\},[/tex] resta agora normalizá-la.
Para normalizar a base, cada um dos polinômios da base [tex]u_1(t),u_2(t),u_3(t)[/tex] deve ser dividido por sua norma.
A norma para polinômios é dada por:
[tex]||u||^2 = \int\limits_{-1}^1 [u(x)]^2\,dx[/tex]
Assim, a base ortonormalizada é dada por:
[tex]\{\frac{u_1(t)}{||u_1(t)||},\frac{u_2(t)}{||u_2(t)||},\frac{u_3(t)}{||u_3(t)||}\}[/tex]
Os cálculos relativos à normalização acima ficam também por sua conta. :)
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.