Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

calcule o valor de n na igualdade Cn,2= n +2

Sagot :

Veja que: Cn,2 = n!/(n-2)!2!
Cn,2 = n(n-1)/2

Logo: n(n-1)/2 = n+2
n² - n = 2n + 4

n² - 3n - 4 = 0

n = 4 ou n = -1

Como n deve ser natural, teremos n = 4.
Da fórmula de Combinação [tex]\boxed{C_{n,p}=\frac{n!}{(n-p)!p!}}[/tex], temos que:

[tex]C_{n,p}=\frac{n!}{(n-p)!p!}\Leftrightarrow C_{n,2}=\frac{n!}{(n-2)!2!}\\\\\\n+2=\frac{n(n-1)(n-2)!}{(n-2)!2\cdot1}\\\\\\\frac{n(n-1)}{2}=n+2\\\\n(n-1)=2(n+2)\\\\n^2-n=2n+4\\\\n^2-3n-4=0\\\\n^2-4n+n-4=0\\\\n(n-4)+1(n-4)=0\\\\(n-4)[n+1]=0[/tex]

 Uma vez que [tex]n\geq0[/tex], isto é, [tex]n\in\mathbb{N}[/tex] temos que [tex]\boxed{\boxed{n=4}}[/tex]