O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Veja que: Cn,2 = n!/(n-2)!2!
Cn,2 = n(n-1)/2
Logo: n(n-1)/2 = n+2
n² - n = 2n + 4
n² - 3n - 4 = 0
n = 4 ou n = -1
Como n deve ser natural, teremos n = 4.
Cn,2 = n(n-1)/2
Logo: n(n-1)/2 = n+2
n² - n = 2n + 4
n² - 3n - 4 = 0
n = 4 ou n = -1
Como n deve ser natural, teremos n = 4.
Da fórmula de Combinação [tex]\boxed{C_{n,p}=\frac{n!}{(n-p)!p!}}[/tex], temos que:
[tex]C_{n,p}=\frac{n!}{(n-p)!p!}\Leftrightarrow C_{n,2}=\frac{n!}{(n-2)!2!}\\\\\\n+2=\frac{n(n-1)(n-2)!}{(n-2)!2\cdot1}\\\\\\\frac{n(n-1)}{2}=n+2\\\\n(n-1)=2(n+2)\\\\n^2-n=2n+4\\\\n^2-3n-4=0\\\\n^2-4n+n-4=0\\\\n(n-4)+1(n-4)=0\\\\(n-4)[n+1]=0[/tex]
Uma vez que [tex]n\geq0[/tex], isto é, [tex]n\in\mathbb{N}[/tex] temos que [tex]\boxed{\boxed{n=4}}[/tex]
[tex]C_{n,p}=\frac{n!}{(n-p)!p!}\Leftrightarrow C_{n,2}=\frac{n!}{(n-2)!2!}\\\\\\n+2=\frac{n(n-1)(n-2)!}{(n-2)!2\cdot1}\\\\\\\frac{n(n-1)}{2}=n+2\\\\n(n-1)=2(n+2)\\\\n^2-n=2n+4\\\\n^2-3n-4=0\\\\n^2-4n+n-4=0\\\\n(n-4)+1(n-4)=0\\\\(n-4)[n+1]=0[/tex]
Uma vez que [tex]n\geq0[/tex], isto é, [tex]n\in\mathbb{N}[/tex] temos que [tex]\boxed{\boxed{n=4}}[/tex]
Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.