Passos
Answered

O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

quais sao as principais caracteristicas das seguintes funçoes :
Funçao de 1°grau: y=ax+b , com a e b costantes , a [tex] \neq [/tex]0.
Funçao de 2°grau:y=ax² + bx + c , com a , b e c constantes , a[tex] \neq [/tex]0.
Funçao y =[tex] \frac{k}{x} [/tex], com K costante , k[tex] \neq [/tex]0.
Funçoes exponencial e logarítmica : y =[tex] a^{x} [/tex]e y = [tex] long_{a} [/tex]x , com a >0 e a [tex] \neq [/tex]1.
Funçoes trigonométricas: y = sen x , y = cosx , y = tg x .

Sagot :

Função de 1º grau:
• O gráfico é uma reta
• Possui apenas 1 raiz real, a não ser que seja uma função constante (a=0)
• Caso o valor de a seja positivo, a reta é crescente, caso negativo, a reta é decrescente.
• O valor de b é o y do ponto onde o gráfico toca o eixo y, sendo P(0,b)
Função de 2º grau:
• Pode possuir duas, uma, ou nenhuma raiz real, dependendo do valor de delta
• O seu gráfico é uma parábola
• Caso o valor de a seja maior que zero, a parábola tem concavidade para cima, caso seja menor que zero, tem concavidade para baixo
Função exponencial:
• Não existem valores negativos para y
 Não há raízes, ou seja, o gráfico nunca toca o eixo x, apenas se aproxima.
• Caso a seja maior que 1, o gráfico é crescente, se a estiver entre 0 e 1, a função é decrescente.