O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
1-.
m = 3;
n = 12
Segue a formula deduzida do teorema de Pitágoras.
[tex]h^2 = m * n\\ h^2 = 3 * 12\\ h^2 = 36\\ h = \sqrt{36} h = 6[/tex]
Temos dois Triângulos então: CÂD + BÂD = CÂB, onde DA = CA = h;
[tex]Area(CÂD) = \frac{m * h}{2}\\Area(CÂD) = \frac{3 * 6}{2}\\Area(CÂD) = \frac{18}{2}\\Area(CÂD) = 9\\\\ Area(CÂD) = \frac{n * h}{2}\\Area(CÂD) = \frac{12 * 6}{2}\\Area(CÂD) = \frac{72}{2}\\Area(CÂD) = 36\\[/tex]
Area(CÂB) = CÂD + BÂD = 9 + 36 = 45;
2- Conforme a fig. anexa:
[tex] ab = 5 cm;\\ h = 2\sqrt{5}\\ \\ ab^2 = m^2 + h^2\\\ 5^2 = m^2 + (2\sqrt{5})^2\\ 25 = m^2 + 4 * 5\\ 25 = m^2 + 20\\ m^2 = 25 - 20\\ m^2 = 5\\ m = \sqrt{5}\\[/tex]
[tex]\\ h^2 = m * n\\ (2\sqrt{5})^2 = \sqrt{5} * n\\ n = \frac{4 * 5}{\sqrt{5}}\\ n = \frac{20 * \sqrt{5}}{\sqrt{5} * \sqrt{5}} ---> racionalizacao\\ n = \frac{20\sqrt{5}}{\5} = 4\sqrt{5} \\ bc = m + n\\ bc = \sqrt{5} + 4\sqrt{5}\\ bc = 5\sqrt{5}\\ \\ por fim:\\ bc^2 = ab^2 + ac^2\\ (5\sqrt{5})^2 = 5^2 + ac^2\\ 25 * 5 = 25 + ac^2\\ 125 - 25 = ac^2\\ ac^2 = 100\\ ac = \sqrt{100}\\ ac = 10\\[/tex]
3-
m = 32;
n = 18;
hipotenusa = a = 32 + 18 = 50;
cat1 = b
[tex]b^2 = a. n\\ b^2 = 50 . 18\\ b^2 = 900\\ b = \sqrt{900}\\b = 30;[/tex]
cat2 = c
[tex]c^2 = a. n\\ c^2 = 50 . 32\\ c^2 = 1600\\ c = \sqrt{1600}\\c = 40;[/tex]
Att,
P.S.: desculpa a demora minha net esta uma $%)$!

Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.