A imagem apresenta o gráfico de uma função f de primeiro grau cuja lei é desconhecida e pede o cálculo da expressão f(0) - f(-5).
A observação do gráfico não nos permite visualizar as funções (os valores y) correspondentes a x = 0 e x = -5, e, por isso, deveremos determinar a lei desta função para que possamos descobrí-los e efetuar a expressão pedida.
Temos os seguintes pontos (x, y) demarcados precisamente no gráfico:
• (-1, 3)
• (2, 7)
Sendo esta uma função de primeiro grau, sabemos que ela segue o modelo f(x) = ax + b. Se substituirmos o valor de x por aqueles valores apresentados nos pontos acima, sabemos que obteremos as respectivas imagens nesta função. Substituindo:
[tex]\bullet \ (-1, 3) \\\\ f(x) = ax + b \\ 3 = -1a + b \\\\ \bullet (2, 7) \\\\ f(x) = ax + b \\ 7 = 2x + b \\\\ \begin{cases} -a + b = 3 \\ 2a + b = 7 \end{cases} \\\\\\ \text{Resolvendo o sistema obtido:}[/tex]
[tex]\begin{cases} b = 3 + a \\ 2a + b = 7 \end{cases} \\\\\\ \bullet 2a + (3 + a) = 7 \\ 3a + 3 = 7 \\ 3a = 4 \\ a = \frac{4}{3} \\\\ \bullet b = 3 + \frac{4}{3} \\\\ b = \frac{9}{3} + \frac{4}{3} \\\\ b = \frac{13}{3}[/tex]
[tex]\text{Assim,} f(x) = \frac{4}{3}x + \frac{13}{3} \\\\ \bullet f(0) \\\\ f(0) = \frac{4}{3} \cdot 0 + \frac{13}{3} \\\\ f(0) = 0 + \frac{13}{3} \\\\ f(0) = \frac{13}{3} \\\\ \bullet f(-5) \\\\ f(-5) = \frac{4}{3} \cdot (-5) + \frac{13}{3} \\\\ f(-5) = -\frac{20}{3} + \frac{13}{3} \\\\ f(-5) = -\frac{7}{3}[/tex]
[tex]\bullet \ f(0) - f(-5) \\\\ \frac{13}{3} - (-\frac{7}{3}) = \frac{13}{3} + \frac{7}{3} = \boxed{\frac{20}{3}}[/tex]