Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

como fazer equaçao do segundo grau

Sagot :

Tarcisio, tudo bem? Costumamos dividir as equações de 2° grau em duas etapas.

1° Calculamos o Delta, que dá-se pela fórmula:

[tex]\boxed{\Delta = b^{2} - 4 \cdot a \cdot c}[/tex]

Onde a, b e c são os coeficientes da equação. Pois, equações de 2° grau, quando completas (ou seja, possui todos os coeficientes), é definida assim:

ax² + bx + c = 0

Vamos ver como é isto na prática:

Temos a seguinte equação:

[tex]x^{2}-5x+4=0[/tex]

Temos que:
coeficiente a = número acompanhado do x elevado ao quadrado (neste caso vale 1)
coeficiente b = número acompanhado do x (neste caso -5)
coeficiente c = número sozinho (neste caso 4)

Jogando naquela fórmula de Delta:

[tex]x^{2}-5x+4=0 \\\\  \Delta = b^{2} - 4 \cdot a \cdot c \\\\ \Delta = (-5)^{2} - 4 \cdot (1) \cdot (4) \\\\ \Delta = 25 - 16 \\\\ \Delta = 9[/tex]

Agora vamos para a segunda parte, que dá-se pela fórmula:

[tex]x = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a} \\\\ x = \frac{-(-5) \pm \sqrt{9}}{2 \cdot 1} \\\\ x = \frac{5 \pm 3}{2} \\\\ agora \ temos \ duas \ solu\c{c}\~{o}es \\\\ x' = \frac{5 + 3}{2} = \frac{8}{2} = \boxed{4} \\\\ x'' = \frac{5 - 3}{2} = \frac{2}{2} = \boxed{1}[/tex]

Portanto, temos duas soluções (sempre coloque solução por ser equação):

[tex]\boxed{\boxed{S = \{1;4\}}}[/tex]

Duas dicas:- quando estiver faltando algum coeficiente, o considere valendo zero.
                  - delta > 0 (mais de uma solução); delta = 0 (uma solução); delta < 0 (não existe solução nos reais)

Mas isso tudo não precisa ficar decorando, você irá perceber ao fazer exercícios.

Ah, e outra coisa, não se assuste se aparecer algo assim:

[tex]x = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}[/tex]

A única coisa que mudou é que não se dividiu em duas partes, ou seja, jogamos a fórmula de delta pra sair diretamente na raiz. Mas é a MESMÍSSIMA COISA.

Última coisa: Não existe nas equações de segundo grau coeficiente "a" valendo zero, pois zero vezes qualquer coisa é zero, e como "a" acompanha a incógnita elevada ao quadrado, se for multiplicada por zero, a equação deixará de ser de 2° grau.

➡➡ Resposta  ⬅ ⬅

➱ O que é uma equação?  

Equação é uma conta matemática que envolve letras ou seja são chamadas incógnitas as mais usadas são X e Y. E possui muitos graus iremos ver a baixo a do segundo grau.

➱ O que é uma equação de segundo grau?  

É uma equação que possui a incógnita (letra) com maior grau igual a 2.

➱ Como fazer uma resolução de equação normal:  

➤ Para resolvermos equações devemos separar os  números com incógnitas que estão na equação para o lado esquerdo do igual.

➤ E devemos passar os números sem incógnitas para o lado direito do igual.

➤ Quando os números estiver do lado errado do igual mudamos o sinal toda vez que mudar de lado.

➱ Como fazer resolução da equação de segundo grau:  

Tem várias formas mas a mais conhecida e mais usada é a forma de Bhaskara, que é uma forma que descobre a equação pelos seus coeficientes. Mas podemos fazer por eliminação das letras também e usando um pouco das regrinhas abaixo.

Regrinhas:  

➢ Números com incógnitas = lado esquerdo do igual .

➢ Números sem incógnitas = lado direito do igual .

➢ Mudando de lado = mude o sinal também.

➱ Como saber se há raízes reais:  

Vendo se o número possui um sinal negativo ou positivo se o número não tiver sinal nenhum ele é considerado positivo.

===========================================================

➡➡ Exemplos ⬅⬅

➱ Equação normal:

3x+4 - 5= 8x-5

3x - 8x = -5 +5

-5x = 0

x= 0/-5

x= 0  

----------------------------------------

Equação na forma de Bhaskara:

-b ± √∆ × 1/2a

∆ = b² - 4ac

x² - 5x + 6

a = 3

b = -8

c = 4

∆ = (-8)² - 4 × 3 × 4

∆ = 64 - 48

∆ = 1

6

-(-5) ± √16 × 1/2

(5 ± 16)/2

x' = (5 + 16)/2

x' = 21/2

x' = 10.5

x" = (5-16)/2  

x" = -11/2

x" = -55

S = (10.5,-55)

----------------------------------------

Somando o produto:

Soma das raízes = -b/a

Produto das raízes = c/a

x² - 4x + 4

-(-4)/1 = 4

4/1 = 4

Pensa em dois números que somados sejam 8 e multiplicados sejam 16. Esses números são: 4 e 4.

S = (4,4)

===========================================================

➡➡ Explicação ⬅⬅

Forma de Bhaskara:

Equação do segundo grau ➱ ax² + bx + y = 0 com a ≠ 0  

Reescrevemos ➱ ax² + bx = -y

Dividindo por algum número no caso da explicação é com a letra a.  

x² + bx/a = -y/a

Fazendo se tornar notável:

x² + 2bx/2a + b²/4a² = -y/a + b²/4a²  

(x + b/2a)² = -4ay + b²/4a²  

x + b/2a = ± √(-4ay + b²)/2a  

x = -b ± √(b² - 4ay) × 1/2a

----------------------------------------

Soma e Produto:

Equação do segundo grau ➱ ax² + bx + c = 0 com a ≠ 0

Raízes são dadas pela essa equação ➱ x = -b ± √(b² - 4ac) × 1/2a

Som as raízes para conseguirmos algum resultado para ficar perto do final da conta ➱  

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

-b + √(b² - 4ay) - b - √(b² - 4ay)/2a

 

Resposta final: -b/a

----------------------------------------

Descobrindo produto:

x' = x = -b + √(b² - 4ay) × 1/2a

x" = x = -b - √(b² - 4ay) × 1/2a

(-b + √(b² - 4ay) )(-b - √(b² - 4ay) × (1/2a)²

(-b)² - ( √(b² - 4ay) )² × 1/4a²

b² - (b² - 4ay) × 1/4a²  

b² - b² + 4ay × 1/4a²

4ay/4a²

y/a

--------------------------------------------------------------------------------

Estude mais equações:

1- brainly.com.br/tarefa/36203446

2- brainly.com.br/tarefa/36384234

Bons Estudos!!

Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.