O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.
Sagot :
Pedro, tem um jeito muito simples de descobrir o centro e o raio de uma equação de circunferência, basta dividir por -2.
Mas esse -2 não saiu do nada. Se você for trabalhar com a equação reduzida da circunferência utilizando apenas letras, e distribuir os quadrados, chegamos nesta relação, onde o x acompanha -2a e o y acompanha -2b. Bem como a fórmula que vou utilizar para descobrir o raio, na teoria, é o termo independente.
Vamos descobrir as coordenadas do centro:
Como não há "x", ele vai valer 0.
[tex]-2a = 0 \\\\ a = \frac{0}{-2} \\\\ \boxed{a = 0}[/tex]
Descobrindo o y
[tex]-2b = -6 \\\ b = \frac{-6}{-2} \\\\ \boxed{b = 3}[/tex]
[tex]\therefore \boxed{\boxed{E(0;3)}}[/tex]
Para descobrir o raio:
[tex]a^{2}+b^{2}-R^{2} = termo \ independente \\\\ (0)^{2}+(3)^{2}-R^{2} = 7 \\\\ 0 + 9 - R^{2} = 7 \\\\ R^{2} = 9-7 \\\\ R^{2} = 2 \\\\ \boxed{\boxed{R = \sqrt{2}}}[/tex]
Mas esse -2 não saiu do nada. Se você for trabalhar com a equação reduzida da circunferência utilizando apenas letras, e distribuir os quadrados, chegamos nesta relação, onde o x acompanha -2a e o y acompanha -2b. Bem como a fórmula que vou utilizar para descobrir o raio, na teoria, é o termo independente.
Vamos descobrir as coordenadas do centro:
Como não há "x", ele vai valer 0.
[tex]-2a = 0 \\\\ a = \frac{0}{-2} \\\\ \boxed{a = 0}[/tex]
Descobrindo o y
[tex]-2b = -6 \\\ b = \frac{-6}{-2} \\\\ \boxed{b = 3}[/tex]
[tex]\therefore \boxed{\boxed{E(0;3)}}[/tex]
Para descobrir o raio:
[tex]a^{2}+b^{2}-R^{2} = termo \ independente \\\\ (0)^{2}+(3)^{2}-R^{2} = 7 \\\\ 0 + 9 - R^{2} = 7 \\\\ R^{2} = 9-7 \\\\ R^{2} = 2 \\\\ \boxed{\boxed{R = \sqrt{2}}}[/tex]
Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.