Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

Em uma questão, eu tenho que achar o intervalo de variação x, sabendo que os lados de um triângulo são expressos por: x+10 2x+4 e 20-2x.

Daí eu fiz assim: (2x+4)+(20-2x)>x+10>(2x+4)-(20-2x)

Aí fiquei aqui: 24>x+10>4x-16 

Sendo que no Gabarito tá:6/5>x>26/3

Aonde eu errei, ou, oque tenho que fazer agora? ---'


Sagot :

De fato, x + 10 > 4x - 16
26 > 3x
x < 26/3.

Porém podemos fazer a condição de existencia de triângulos para todos os lados. Ou seja:
(x+10)+(2x+4) > 20 - 2x
3x + 14 > 20 - 2x
5x > 6
x > 6/5

Acredito que os sinais do gabarito estejam invertidos pois 26/3 é maior que 6/5.
x+10>(2x+4)-(20-2x)
x + 10 > 2x +4-20+2x
x -2x-2x > 4 -20-10
  -3x > - 26(-1)
    3x<26
      x <26/3

(x+10)+(2x+4) > 20 - 2x
2x +4+ x + 10 > 20-2x
2x+2x+x > -10-4+20
      5x > 6
       x >6/5
                                   6/5 < x < 26/3