O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.
Sagot :
Bom, podemos calcular o determinante de uma matriz escolhendo uma linha ou uma coluna, e multiplicar cada elemento pelo seu cofator.
Para facilitar nossos cálculos, escolheremos a linha/coluna que possui mais zeros, que no caso, é a primeira coluna.
[tex]\begin{bmatrix} -1 & 3 & -1 & 4 \\ 2 & 1 & 0 & 2 \\ 0 & -1 & 2 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}[/tex]
Então vamos lá. Começamos com o primeiro elemento: iremos multiplica-lo pelo seu cofator. No que consiste o cofator? O cofator tem a seguinte fórmula:
[tex]\boxed{A_{ij} = (-1)^{i+j} \cdot D_{A}}[/tex]
Este "D" da fórmula, significa determinante do cofator, que é todos os elementos que restam excluindo a linha e a coluna do elemento que a gente está calculando. O cofator sempre é representado por letra maiúscula.
Vamos lá:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21}[/tex]
Vamos calcular o cofator de cada um separadamente.
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = (-1)^{2} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = 1 \cdot (4-2-16-3) \\\\ \boxed{A_{11} = -17}[/tex]
Agora iremos calcular o cofator do segundo elemento:
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{21} = (-1)^{3} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\ A_{21} = -1 \cdot (12-12-4-32-2-9) \\\\ A_{21} = -1 \cdot -47 \\\\ \boxed{A_{21} = 47}[/tex]
Voltando:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21} \\\\ D = -1 \cdot (-17) + 2 \cdot 47 \\\\ D = 17+94 \\\\ \boxed{\boxed{D= 111}}[/tex]
Olha, o resultado deu 111. Consultando uma calculadora online, ela confirmou. Está certo esse resultado que te passaram?
Para facilitar nossos cálculos, escolheremos a linha/coluna que possui mais zeros, que no caso, é a primeira coluna.
[tex]\begin{bmatrix} -1 & 3 & -1 & 4 \\ 2 & 1 & 0 & 2 \\ 0 & -1 & 2 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}[/tex]
Então vamos lá. Começamos com o primeiro elemento: iremos multiplica-lo pelo seu cofator. No que consiste o cofator? O cofator tem a seguinte fórmula:
[tex]\boxed{A_{ij} = (-1)^{i+j} \cdot D_{A}}[/tex]
Este "D" da fórmula, significa determinante do cofator, que é todos os elementos que restam excluindo a linha e a coluna do elemento que a gente está calculando. O cofator sempre é representado por letra maiúscula.
Vamos lá:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21}[/tex]
Vamos calcular o cofator de cada um separadamente.
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = (-1)^{2} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = 1 \cdot (4-2-16-3) \\\\ \boxed{A_{11} = -17}[/tex]
Agora iremos calcular o cofator do segundo elemento:
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{21} = (-1)^{3} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\ A_{21} = -1 \cdot (12-12-4-32-2-9) \\\\ A_{21} = -1 \cdot -47 \\\\ \boxed{A_{21} = 47}[/tex]
Voltando:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21} \\\\ D = -1 \cdot (-17) + 2 \cdot 47 \\\\ D = 17+94 \\\\ \boxed{\boxed{D= 111}}[/tex]
Olha, o resultado deu 111. Consultando uma calculadora online, ela confirmou. Está certo esse resultado que te passaram?
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.