Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Encontre soluções rápidas e confiáveis para suas dúvidas de uma comunidade de especialistas dedicados. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
Bom, podemos calcular o determinante de uma matriz escolhendo uma linha ou uma coluna, e multiplicar cada elemento pelo seu cofator.
Para facilitar nossos cálculos, escolheremos a linha/coluna que possui mais zeros, que no caso, é a primeira coluna.
[tex]\begin{bmatrix} -1 & 3 & -1 & 4 \\ 2 & 1 & 0 & 2 \\ 0 & -1 & 2 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}[/tex]
Então vamos lá. Começamos com o primeiro elemento: iremos multiplica-lo pelo seu cofator. No que consiste o cofator? O cofator tem a seguinte fórmula:
[tex]\boxed{A_{ij} = (-1)^{i+j} \cdot D_{A}}[/tex]
Este "D" da fórmula, significa determinante do cofator, que é todos os elementos que restam excluindo a linha e a coluna do elemento que a gente está calculando. O cofator sempre é representado por letra maiúscula.
Vamos lá:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21}[/tex]
Vamos calcular o cofator de cada um separadamente.
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = (-1)^{2} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = 1 \cdot (4-2-16-3) \\\\ \boxed{A_{11} = -17}[/tex]
Agora iremos calcular o cofator do segundo elemento:
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{21} = (-1)^{3} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\ A_{21} = -1 \cdot (12-12-4-32-2-9) \\\\ A_{21} = -1 \cdot -47 \\\\ \boxed{A_{21} = 47}[/tex]
Voltando:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21} \\\\ D = -1 \cdot (-17) + 2 \cdot 47 \\\\ D = 17+94 \\\\ \boxed{\boxed{D= 111}}[/tex]
Olha, o resultado deu 111. Consultando uma calculadora online, ela confirmou. Está certo esse resultado que te passaram?
Para facilitar nossos cálculos, escolheremos a linha/coluna que possui mais zeros, que no caso, é a primeira coluna.
[tex]\begin{bmatrix} -1 & 3 & -1 & 4 \\ 2 & 1 & 0 & 2 \\ 0 & -1 & 2 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}[/tex]
Então vamos lá. Começamos com o primeiro elemento: iremos multiplica-lo pelo seu cofator. No que consiste o cofator? O cofator tem a seguinte fórmula:
[tex]\boxed{A_{ij} = (-1)^{i+j} \cdot D_{A}}[/tex]
Este "D" da fórmula, significa determinante do cofator, que é todos os elementos que restam excluindo a linha e a coluna do elemento que a gente está calculando. O cofator sempre é representado por letra maiúscula.
Vamos lá:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21}[/tex]
Vamos calcular o cofator de cada um separadamente.
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = (-1)^{2} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = 1 \cdot (4-2-16-3) \\\\ \boxed{A_{11} = -17}[/tex]
Agora iremos calcular o cofator do segundo elemento:
[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{21} = (-1)^{3} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\ A_{21} = -1 \cdot (12-12-4-32-2-9) \\\\ A_{21} = -1 \cdot -47 \\\\ \boxed{A_{21} = 47}[/tex]
Voltando:
[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21} \\\\ D = -1 \cdot (-17) + 2 \cdot 47 \\\\ D = 17+94 \\\\ \boxed{\boxed{D= 111}}[/tex]
Olha, o resultado deu 111. Consultando uma calculadora online, ela confirmou. Está certo esse resultado que te passaram?
Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.