O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma.
Sagot :
Oi, Jr.
Uma transformação linear é sobrejetiva ou sobrejetora se o conjunto imagem é igual ao contradomínio da transformação.
O contradomínio da transformação T é R³. Portanto, sua imagem deve ser todo o R³ também.
A transformação T = (2x + Bz, Bz + 2y, By + 2z) pode ser escrita, na forma matricial, como sendo:
[tex](2x + Bz, Bz + 2y, By + 2z) = \\\\ =\left[\begin{array}{ccc}2&0&B\\0&2&B\\0&B&2\end{array}\right] \cdot \left[\begin{array}{c}x\\y\\z\end{array}\right][/tex]
Para que a imagem de T seja igual ao contradomínio R³, devem existir, para quaisquer vetores u = (x,y,z) pertencentes ao domínio R³, vetores v = (x',y',z') pertencentes ao contradomínio R³ tais que T(u) = v, ou seja, devem existir x', y' e z', para quaisquer x, y e z, tais que:
[tex]\left[\begin{array}{ccc}2&0&B\\0&2&B\\0&B&2\end{array}\right] \cdot \left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}x'\\y'\\z'\end{array}\right][/tex]
Para que a condição acima seja possível, o determinante da matriz 3x3 do sistema linear acima deve ser diferente de zero, ou seja:
[tex]\begin{vmatrix}2&0&B\\0&2&B\\0&B&2\end{vmatrix}\neq0 \Rightarrow 8+0+0-0-2B^2-0\neq0 \Rightarrow \\\\\ 8-2B^2\neq0 \Rightarrow 2(4-B^2)\neq0 \Rightarrow 4-B^2\neq0 \Rightarrow\\\\ B^2\neq4 \Rightarrow \boxed{B\neq \pm 2}[/tex]
Uma transformação linear é sobrejetiva ou sobrejetora se o conjunto imagem é igual ao contradomínio da transformação.
O contradomínio da transformação T é R³. Portanto, sua imagem deve ser todo o R³ também.
A transformação T = (2x + Bz, Bz + 2y, By + 2z) pode ser escrita, na forma matricial, como sendo:
[tex](2x + Bz, Bz + 2y, By + 2z) = \\\\ =\left[\begin{array}{ccc}2&0&B\\0&2&B\\0&B&2\end{array}\right] \cdot \left[\begin{array}{c}x\\y\\z\end{array}\right][/tex]
Para que a imagem de T seja igual ao contradomínio R³, devem existir, para quaisquer vetores u = (x,y,z) pertencentes ao domínio R³, vetores v = (x',y',z') pertencentes ao contradomínio R³ tais que T(u) = v, ou seja, devem existir x', y' e z', para quaisquer x, y e z, tais que:
[tex]\left[\begin{array}{ccc}2&0&B\\0&2&B\\0&B&2\end{array}\right] \cdot \left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}x'\\y'\\z'\end{array}\right][/tex]
Para que a condição acima seja possível, o determinante da matriz 3x3 do sistema linear acima deve ser diferente de zero, ou seja:
[tex]\begin{vmatrix}2&0&B\\0&2&B\\0&B&2\end{vmatrix}\neq0 \Rightarrow 8+0+0-0-2B^2-0\neq0 \Rightarrow \\\\\ 8-2B^2\neq0 \Rightarrow 2(4-B^2)\neq0 \Rightarrow 4-B^2\neq0 \Rightarrow\\\\ B^2\neq4 \Rightarrow \boxed{B\neq \pm 2}[/tex]
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.