O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.
Sagot :
Lembre-se de que [tex]D = V . T[/tex].
Imagine que as cidades e a correnteza sejam representadas assim:
A >>>>>>>>>>>>>>> B (onde > é o sentido da correnteza, já que é o que o enunciado diz. Consideraremos D a distância entre as cidades, Vb a velocidade do barco, e Vc a da correnteza.)
Quando o barco vai de A para B e demora 60h, sua equação de movimento fica assim: [tex]D = (Vb+Vc).T[/tex], já que as duas velocidades se somam por estarem no mesmo sentido e direção. Substituindo o tempo 60h na equação, temos: [tex]D = (Vb+Vc).60[/tex]. Fazendo o mesmo procedimento para a viagem de B para A, temos: [tex]D = (Vb-Vc).80[/tex]. O sinal agora é negativo pois o barco está sendo retardado pela velocidade da correnteza. Igualando as duas equações (D = D), temos: [tex](Vb+Vc).60 = (Vb-Vc).80 [/tex]
[tex](Vb+Vc).3 = (Vb-Vc).4[/tex]
[tex]3Vb+3Vc = 4Vb - 4Vc [/tex]
[tex]Vb = 7Vc [/tex]
Mas para que fizemos tudo isso? Para eliminar uma incógnita na equação que é utilizada para descobrir quanto tempo o barco leva para percorrer essa distância com o motor desligado (ou seja, só levado pela correnteza.)
Com o motor desligado: [tex]D = Vc.T[/tex].
Como esse D é o mesmo D das outras expressões, podemos igualá-lo a qualquer uma das duas. ( D = D )
[tex]D = Vc.T[/tex] e [tex]D = (Vb-Vc).80[/tex], Logo
[tex] Vc.T = (Vb-Vc).80 [/tex] Como Vb = 7 Vc:
[tex] Vc.T = (7Vc-Vc).80 [/tex]
[tex] Vc.T = 6Vc.80 [/tex] Dividindo os dois lados por Vc:
[tex] T = 6.80 [/tex]
[tex] T = 480 horas [/tex]
Imagine que as cidades e a correnteza sejam representadas assim:
A >>>>>>>>>>>>>>> B (onde > é o sentido da correnteza, já que é o que o enunciado diz. Consideraremos D a distância entre as cidades, Vb a velocidade do barco, e Vc a da correnteza.)
Quando o barco vai de A para B e demora 60h, sua equação de movimento fica assim: [tex]D = (Vb+Vc).T[/tex], já que as duas velocidades se somam por estarem no mesmo sentido e direção. Substituindo o tempo 60h na equação, temos: [tex]D = (Vb+Vc).60[/tex]. Fazendo o mesmo procedimento para a viagem de B para A, temos: [tex]D = (Vb-Vc).80[/tex]. O sinal agora é negativo pois o barco está sendo retardado pela velocidade da correnteza. Igualando as duas equações (D = D), temos: [tex](Vb+Vc).60 = (Vb-Vc).80 [/tex]
[tex](Vb+Vc).3 = (Vb-Vc).4[/tex]
[tex]3Vb+3Vc = 4Vb - 4Vc [/tex]
[tex]Vb = 7Vc [/tex]
Mas para que fizemos tudo isso? Para eliminar uma incógnita na equação que é utilizada para descobrir quanto tempo o barco leva para percorrer essa distância com o motor desligado (ou seja, só levado pela correnteza.)
Com o motor desligado: [tex]D = Vc.T[/tex].
Como esse D é o mesmo D das outras expressões, podemos igualá-lo a qualquer uma das duas. ( D = D )
[tex]D = Vc.T[/tex] e [tex]D = (Vb-Vc).80[/tex], Logo
[tex] Vc.T = (Vb-Vc).80 [/tex] Como Vb = 7 Vc:
[tex] Vc.T = (7Vc-Vc).80 [/tex]
[tex] Vc.T = 6Vc.80 [/tex] Dividindo os dois lados por Vc:
[tex] T = 6.80 [/tex]
[tex] T = 480 horas [/tex]
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.