Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Ta em anexo os valores de x que correspondem ao intervalo entre 0 e 2pi (que é o ciclo inteiro) no ciclo trigonométrico na imagem abaixo.
Mas, perceba que ele quer os valores somente entre 0 e 1, certo?
Então , na imagem, você vai observar somente os valores da tgx entre 0° e 90° (pois este é o valor x pedido no intervalo da questão) ok?
Mas, perceba que ele quer os valores somente entre 0 e 1, certo?
Então , na imagem, você vai observar somente os valores da tgx entre 0° e 90° (pois este é o valor x pedido no intervalo da questão) ok?
Com a condição 0 < tan(x) < 1, desejamos encontrar ângulos x cujas tangentes estejam compreendidas entre 0 e 1.
--------------------------------------------------------------------------------
Primeiro quadrante:
• O ângulo x que possui 0 como tangente é o ângulo 0º, 0 rad
• O ângulo x que possui 1 como tangente é o ângulo 45º, [tex]\frac{\pi}{4}[/tex] rad
• Ângulos situados entre 0º e 45º possuem tangentes situadas entre 0 e 1
Assim, neste quadrante, os valores de x que satisfazem a condição 0 < tan(x) < 1 são expressos por [tex]\text{S}_1 = \ ]0^\circ,45^\circ[[/tex] ou [tex]\text{S}_1 = \ ]0, \frac{\pi}{4}[[/tex]. É válido lembrar que 0º e 45º não são incluídos na solução desta condição, pois esta determina pelo sinal aberto (<) que as tangentes não apenas estejam compreendidas entre zero e um, mas também que não sejam iguais a tais.
--------------------------------------------------------------------------------
Segundo quadrante:
• No segundo quadrante, toda tangente é menor que zero para todo ângulo x, exceto para 90º e 180º, que possuem tangentes respectivamente iguais a infinito e 0, não compreendidos entre 0 e 1.
Assim, [tex]\text{S}_2 = \varnothing[/tex]
--------------------------------------------------------------------------------
Terceiro quadrante:
• O ângulo x que possui 0 como tangente é o ângulo 180º, [tex]\pi[/tex] rad
• O ângulo x que possui 1 como tangente é o ângulo 225º, [tex]\frac{5\pi}{4}[/tex] rad
• Ângulos situados entre 180º e 225º possuem tangentes situadas entre 0 e 1
Assim, neste quadrante, os valores de x que satisfazem a condição 0 < tan(x) < 1 são expressos por [tex]\text{S}_3 = \ ]180^\circ,225^\circ[[/tex] ou [tex]\text{S}_3 = \ ]\pi, \frac{5\pi}{4}[[/tex]. É válido lembrar que 180º e 225º não são incluídos na solução desta condição, pois esta determina pelo sinal aberto (<) que as tangentes não apenas estejam compreendidas entre zero e um, mas também que não sejam iguais a tais.
--------------------------------------------------------------------------------
Quarto quadrante:
• No quarto quadrante, toda tangente é menor que zero para todo ângulo x, exceto para 270º e 360º, que possuem tangentes respectivamente iguais a menos infinito e 0, não compreendidos entre 0 e 1.
Assim, [tex]\text{S}_4 = \varnothing[/tex]
--------------------------------------------------------------------------------
Juntando as soluções (expressaremos em radianos), temos:
[tex]\text{S} = \ ]0, \frac{\pi}{4}[ \ \cup \ ]\pi, \frac{5\pi}{4}[[/tex]
ou
[tex]\text{S} = \{x \in \mathbb{R} \ | \ 0 < x < \frac{\pi}{4} \ ou \ \pi < x < \frac{5\pi}{4}\}[/tex]
--------------------------------------------------------------------------------
Primeiro quadrante:
• O ângulo x que possui 0 como tangente é o ângulo 0º, 0 rad
• O ângulo x que possui 1 como tangente é o ângulo 45º, [tex]\frac{\pi}{4}[/tex] rad
• Ângulos situados entre 0º e 45º possuem tangentes situadas entre 0 e 1
Assim, neste quadrante, os valores de x que satisfazem a condição 0 < tan(x) < 1 são expressos por [tex]\text{S}_1 = \ ]0^\circ,45^\circ[[/tex] ou [tex]\text{S}_1 = \ ]0, \frac{\pi}{4}[[/tex]. É válido lembrar que 0º e 45º não são incluídos na solução desta condição, pois esta determina pelo sinal aberto (<) que as tangentes não apenas estejam compreendidas entre zero e um, mas também que não sejam iguais a tais.
--------------------------------------------------------------------------------
Segundo quadrante:
• No segundo quadrante, toda tangente é menor que zero para todo ângulo x, exceto para 90º e 180º, que possuem tangentes respectivamente iguais a infinito e 0, não compreendidos entre 0 e 1.
Assim, [tex]\text{S}_2 = \varnothing[/tex]
--------------------------------------------------------------------------------
Terceiro quadrante:
• O ângulo x que possui 0 como tangente é o ângulo 180º, [tex]\pi[/tex] rad
• O ângulo x que possui 1 como tangente é o ângulo 225º, [tex]\frac{5\pi}{4}[/tex] rad
• Ângulos situados entre 180º e 225º possuem tangentes situadas entre 0 e 1
Assim, neste quadrante, os valores de x que satisfazem a condição 0 < tan(x) < 1 são expressos por [tex]\text{S}_3 = \ ]180^\circ,225^\circ[[/tex] ou [tex]\text{S}_3 = \ ]\pi, \frac{5\pi}{4}[[/tex]. É válido lembrar que 180º e 225º não são incluídos na solução desta condição, pois esta determina pelo sinal aberto (<) que as tangentes não apenas estejam compreendidas entre zero e um, mas também que não sejam iguais a tais.
--------------------------------------------------------------------------------
Quarto quadrante:
• No quarto quadrante, toda tangente é menor que zero para todo ângulo x, exceto para 270º e 360º, que possuem tangentes respectivamente iguais a menos infinito e 0, não compreendidos entre 0 e 1.
Assim, [tex]\text{S}_4 = \varnothing[/tex]
--------------------------------------------------------------------------------
Juntando as soluções (expressaremos em radianos), temos:
[tex]\text{S} = \ ]0, \frac{\pi}{4}[ \ \cup \ ]\pi, \frac{5\pi}{4}[[/tex]
ou
[tex]\text{S} = \{x \in \mathbb{R} \ | \ 0 < x < \frac{\pi}{4} \ ou \ \pi < x < \frac{5\pi}{4}\}[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.