O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Isabela, para definirmos o ponto de intersecção entre as retas, temos que montar um sistema.
[tex]\left\{\begin{matrix} x+3y+4 = 0 \\ 2x-5y-2=0 \end{matrix}\right.[/tex]
Porém, quando temos só número, podemos passa-lo para o outro lado, trocando apenas o sinal:
[tex]\left\{\begin{matrix} x+3y = -4 \\ 2x-5y=2 \end{matrix}\right.[/tex]
Agora você pode resolver da maneira que quiser: pelo método de substituição ou cancelamento, pelo qual vou fazer para ser mais simples.
No método de cancelamento, você deixa um termo positivo numa equação e o mesmo termo positivo na outra equação. Caso eles não forem iguais, tiramos MMC, e caso tiverem sinais iguais, multiplicamos algum por sinal negativo.
[tex]\left\{\begin{matrix} x+3y = -4 \ \ \times 5 \\ 2x-5y=2 \ \ \times 3 \end{matrix}\right. \\\\\\ \left\{\begin{matrix} 5x+15y = -20 \\ 6x-15y=6 \end{matrix}\right. \\\\ somando \\\\ 11x = -14 \\\\ \boxed{x = -\frac{14}{11}}[/tex]
Voltando em uma das equações:
[tex]6x-15y=6 \\\\ 6 \cdot (-\frac{14}{11}) - 15y = 6 \\\\ -\frac{84}{11} - 15y = 6 \\\\ -15y = 6 + \frac{84}{11} \\\\ -15y = \frac{66}{11} + \frac{84}{11} \\\\ -15y = \frac{150}{11} \ \ \times (-1) \\\\ 15y = -\frac{150}{11} \\\\ y = \frac{\frac{-150}{11}}{\frac{15}{1}} \\\\ y = \frac{-150}{165}[/tex]
[tex]simplificando \\\\ \boxed{y = -\frac{10}{11}}[/tex]
[tex]\therefore \boxed{(-\frac{14}{11};-\frac{10}{11})}[/tex]
[tex]\left\{\begin{matrix} x+3y+4 = 0 \\ 2x-5y-2=0 \end{matrix}\right.[/tex]
Porém, quando temos só número, podemos passa-lo para o outro lado, trocando apenas o sinal:
[tex]\left\{\begin{matrix} x+3y = -4 \\ 2x-5y=2 \end{matrix}\right.[/tex]
Agora você pode resolver da maneira que quiser: pelo método de substituição ou cancelamento, pelo qual vou fazer para ser mais simples.
No método de cancelamento, você deixa um termo positivo numa equação e o mesmo termo positivo na outra equação. Caso eles não forem iguais, tiramos MMC, e caso tiverem sinais iguais, multiplicamos algum por sinal negativo.
[tex]\left\{\begin{matrix} x+3y = -4 \ \ \times 5 \\ 2x-5y=2 \ \ \times 3 \end{matrix}\right. \\\\\\ \left\{\begin{matrix} 5x+15y = -20 \\ 6x-15y=6 \end{matrix}\right. \\\\ somando \\\\ 11x = -14 \\\\ \boxed{x = -\frac{14}{11}}[/tex]
Voltando em uma das equações:
[tex]6x-15y=6 \\\\ 6 \cdot (-\frac{14}{11}) - 15y = 6 \\\\ -\frac{84}{11} - 15y = 6 \\\\ -15y = 6 + \frac{84}{11} \\\\ -15y = \frac{66}{11} + \frac{84}{11} \\\\ -15y = \frac{150}{11} \ \ \times (-1) \\\\ 15y = -\frac{150}{11} \\\\ y = \frac{\frac{-150}{11}}{\frac{15}{1}} \\\\ y = \frac{-150}{165}[/tex]
[tex]simplificando \\\\ \boxed{y = -\frac{10}{11}}[/tex]
[tex]\therefore \boxed{(-\frac{14}{11};-\frac{10}{11})}[/tex]
As coordenadas do ponto de interseção de r com s são x = -14/11 e y = -10/11.
Para calcularmos o ponto de interseção entre duas retas, precisamos substituir uma equação na outra.
Temos que as equações das retas são r: x + 3y + 4 = 0 e s: 2x - 5y - 2 = 0.
Da equação da reta r, podemos dizer que x = -3y - 4.
Substituindo o valor de x na equação da reta s:
2(-3y - 4) - 5y - 2 = 0
-6y - 8 - 5y - 2 = 0
-11y = 10
y = -10/11
y ≈ -0.91.
Com o valor de y, vamos substituir em x = -3y - 4:
x = -3(-10/11) - 4
x = 30/11 - 4
x = -14/11
x ≈ -1.27.
Portanto, o ponto de interseção entre as retas r e s é A = (-14/11,-10/11).
Para mais informações, acesse: https://brainly.com.br/tarefa/18258658
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.