Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.

encontre as raízes da equação
 
[tex] \sqrt{\frac{x^2-2x-2}{x^2+4x+2}}+\sqrt{\frac{x^2+4x+2}{x^2-2x-2}}=2[/tex]

Sagot :

Consideremos [tex]\begin{cases}x^2-2x-2=a\\x^2+4x+2=b\end{cases}[/tex]

Segue,

[tex]\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=2\\\\(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}})^2=2^2\\\\\frac{a}{b}+2\sqrt{\frac{ab}{ba}}+\frac{b}{a}=4\\\\\frac{a}{b}+\frac{b}{a}=4-2\\\\a^2+b^2=2ab\\\\a^2-2ab+b^2=0\\\\(a-b)^2=0[/tex]

 Retornemos com os valores iniciais.

[tex](a-b)^2=0\\[x^2-2x-2-(x^2+4x+2)]^2=0\\(x^2-2x-2-x^2-4x-2)^2=0\\(-6x-4)^2=0\\(-6x-4)(-6x-4)=0[/tex]

 Já que o produto entre os dois termos é nulo, um deles vale zero, certo?! Como são iguais...

[tex]-6x-4=0\\\\-6x=4\\\\x=\frac{4}{-6}\\\\\boxed{\boxed{x=-\frac{2}{3}}}[/tex]


 Se não errei nada, é isso!!

 Espero ter ajudado.