Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
[tex]\sqrt{xy} \leq \frac{x + y}{2} \\\\ \left ( \sqrt{xy} \right ) \leq \left ( \frac{x + y}{2} \right )^2 \\\\ xy \leq \frac{x^2 + 2xy + y^2}{4} \\\\ xy - \frac{x^2 + 2xy + y^2}{4} \leq 0 \\\\ \frac{4xy - x^2 - 2xy - y^2}{4} \leq 0 \\\\ \frac{- x^2 + 2xy - y^2}{4} \leq 0 \\\\ \frac{- (x^2 - 2xy + y^2)}{4} \leq 0 \\\\ \frac{- (x - y)^2}{4} \leq 0[/tex]
Andreza, atente ao fato de que qualquer número elevado a um expoente PAR é sempre positivo, com isso, podemos concluir que a sentença é verdadeira!!
Espero ter ajudado!!
Andreza, atente ao fato de que qualquer número elevado a um expoente PAR é sempre positivo, com isso, podemos concluir que a sentença é verdadeira!!
Espero ter ajudado!!
Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.