O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Mim explica um pouco sobre P.A ?



Sagot :

1 - Introdução

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma sequência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.

Uma sequência pode ser finita ou infinita. 
O exemplo dado acima é de uma sequência finita. 
Já a sequência P = (0, 2, 4, 6, 8, ... ) é infinita.

Uma sequência numérica pode ser representada genericamente na forma:
(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k < n).

Por exemplo, na sequência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18,  a5 = 162, etc.

São de particular interesse, as sequências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles. 
Assim, na sequência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3.
A lei de formação ou seja a expressão matemática que relaciona entre si os termos da sequência, é denominada termo geral.

Considere por exemplo a sequência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo. 
Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente. 
Assim por exemplo, para n = 20, teremos 
an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa sequência (a20) é igual a 65. 
Prosseguindo com esse raciocínio, podemos escrever toda a sequência S que seria: 
S = ( 8, 11, 14, 17, 20, ... ).

Dado o termo geral de uma sequência, é sempre fácil determiná-la. 
Seja por exemplo a sequência de termo geral an = n2 + 4n + 10, para n inteiro e positivo. 
Nestas condições, podemos concluir que a sequência poderá ser escrita como: 
(15, 22, 31, 42, 55, 70, ... ). 

Por exemplo:
 a6 = 70 porque a6 = 62 + 4.6 + 10 = 36 + 24 + 10 = 70.

2 - Conceito de Progressão Aritmética - PA

Chama-se Progressão Aritmética – PA – à toda sequência numérica cujos termos a partir do segundo, são iguais ao anterior somado com um valor constante denominado razão.

Exemplos:
A = ( 1, 5, 9, 13, 17, 21, ... ) razão = 4 (PA crescente)
B = ( 3, 12, 21, 30, 39, 48, ... ) razão = 9 (PA crescente)
C = ( 5, 5, 5, 5, 5, 5, 5, ... ) razão = 0 (PA constante)
D = ( 100, 90, 80, 70, 60, 50, ... ) razão = -10 ( PA decrescente)

3 - Termo Geral de uma PA

Seja a PA genérica (a1, a2, a3, ... , an, ...) de razão r. 
De acordo com a definição podemos escrever:
a2 = a1 + 1.r 
a3 = a2 + r = (a1 + r) + r = a1 + 2r 
a4 = a3 + r = (a1 + 2r) + r = a1 + 3r
.....................................................

Podemos inferir (deduzir) das igualdades acima que: .............. an = a1 + (n – 1) . r
A expressão an = a1 + (n – 1) . r é denominada termo geral da PA.
Nesta fórmula, temos que an é o termo de ordem n (n-ésimo termo) , r é a razão e a1 é o primeiro termo da Progressão Aritmética – PA.

Exemplos:

Qual o milésimo número ímpar positivo?
Temos a PA: ( 1, 3, 5, 7, 9, ... ) onde o primeiro termo a1= 1, a razão r = 2 e queremos calcular o milésimo termo a1000. Nestas condições, n = 1000 e poderemos escrever:
a1000 = a1 + (1000 - 1).2 = 1 + 999.2 = 1 + 1998 = 1999. 
Portanto, 1999 é o milésimo número ímpar.

Qual o número de termos da PA: ( 100, 98, 96, ... , 22) ?
Temos a1 = 100, r = 98 -100 = - 2 e an = 22 e desejamos calcular n. 
Substituindo na fórmula do termo geral, fica: 22 = 100 + (n - 1). (- 2) ; 
logo, 22 - 100 = - 2n + 2 e, 22 - 100 - 2 = - 2n de onde conclui-se que - 80 = - 2n , 
de onde vem n = 40. 
Portanto, a PA possui 40 termos.

Através de um tratamento simples e conveniente da fórmula do termo geral de uma PA, podemos generaliza-la da seguinte forma:

Sendo aj o termo de ordem j (j-ésimo termo) da PA e ak o termo de ordem k ( k-ésimo termo) da PA, poderemos escrever a seguinte fórmula genérica:
aj = ak + (j - k).r

Exemplos:

Se numa PA o quinto termo é 30 e o vigésimo termo é 60, qual a razão?
Temos a5 = 30 e a20 = 60. 
Pela fórmula anterior, poderemos escrever:
a20 = a5 + (20 - 5) . r e substituindo fica: 60 = 30 + (20 - 5).r ;
60 - 30 = 15r ; logo, r = 2.

Numa PA de razão 5, o vigésimo termo vale 8. Qual o terceiro termo?
Temos r = 5, a20 = 8.
Logo, o termo procurado será: a3 = a20 + (3 – 20).5
a3 = 8 –17.5 = 8 – 85 = - 77.

4 - Propriedades das Progressões Aritméticas

Numa PA, cada termo (a partir do segundo) é a média aritmética dos termos vizinhos deste.

Exemplo: 
PA : ( m, n, r ) ; portanto, n = (m + r) / 2

Assim, se lhe apresentarem um problema de PA do tipo: 
Três números estão em PA, ... , a forma mais inteligente de resolver o problema é considerar que a PA é do tipo: 
(x - r, x, x + r), onde r é a razão da PA.

Numa PA, a soma dos termos equidistantes dos extremos é constante.

Exemplo:
PA : ( m, n, r, s, t); portanto, m + t = n + s = r + r = 2r

Estas propriedades facilitam sobremaneira a solução de problemas.

5 - Soma dos n primeiros termos de uma PA

Seja a PA ( a1, a2, a3, ..., an-1, an). 
A soma dos n primeiros termos Sn = a1 + a2 + a3 + ... + an-1 + an , pode ser deduzida facilmente, da aplicação da segunda propriedade acima.

Temos:
Sn = a1 + a2 + a3 + ... + an-1 + an

É claro que também poderemos escrever a igualdade acima como:
Sn = an + an-1 + ... + a3 + a2 + a1

Somando membro a membro estas duas igualdades, vem:
2. Sn = (a1 + an) + (a2 + an-1) + ... + (an + a1)

Logo, pela segunda propriedade acima, as n parcelas entre parênteses possuem o mesmo valor ( são iguais à soma dos termos extremos a1 + an ) , de onde concluímos inevitavelmente que:
2.Sn = (a1 + an).n , onde n é o número de termos da PA.

Daí então, vem finalmente que:

Exemplo:
Calcule a soma dos 200 primeiros números ímpares positivos.
Temos a PA: ( 1, 3, 5, 7, 9, ... )
Precisamos conhecer o valor de a200 . 
Mas, a200 = a1 + (200 - 1).r = 1 + 199.2 = 399
Logo, Sn = [(1 + 399). 200] / 2 = 40.000
Portanto, a soma dos duzentos primeiros números ímpares positivos é igual a 40000.