Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Olá, Verinha.
[tex] R (q)= -q\³+ 60 q\² ,\text{para }0 \leq q \leq 30 \\\\ \underline{\text{Derivada de }R(q)}: \\\\ R'(q)=-3q\²+120q[/tex]
No ponto onde a derivada se anula, temos um máximo ou mínimo local.
Vamos procurar, portanto, os valores de q que anulam a derivada:
[tex]R'(q)=-3q\²+120q=0 \Leftrightarrow 3q\²-120q=0 \Leftrightarrow \\\\ 3q(q-40)=0 \Leftrightarrow\boxed{q=0}\text{ ou }q=40[/tex]
O valor q = 40 está fora do intervalo 0 ≤ q ≤ 30. Portanto, vamos tomar apenas o valor q = 0, que pertence ao intervalo.
Já sabemos, até aqui, que q = 0 é um máximo ou um mínimo local. Falta apenas sabermos se ele é um mínimo ou um máximo.
Para sabermos se ele é um mínimo ou um máximo, devemos investigar a segunda derivada da função no ponto q = 0.
R''(q) = - 6q + 120 [tex]\Rightarrow[/tex] R''(0) = 120 > 0
Como a segunda derivada no ponto q = 0 é positiva, temos que o ponto q = 0 é um MÍNIMO.
[tex] R (q)= -q\³+ 60 q\² ,\text{para }0 \leq q \leq 30 \\\\ \underline{\text{Derivada de }R(q)}: \\\\ R'(q)=-3q\²+120q[/tex]
No ponto onde a derivada se anula, temos um máximo ou mínimo local.
Vamos procurar, portanto, os valores de q que anulam a derivada:
[tex]R'(q)=-3q\²+120q=0 \Leftrightarrow 3q\²-120q=0 \Leftrightarrow \\\\ 3q(q-40)=0 \Leftrightarrow\boxed{q=0}\text{ ou }q=40[/tex]
O valor q = 40 está fora do intervalo 0 ≤ q ≤ 30. Portanto, vamos tomar apenas o valor q = 0, que pertence ao intervalo.
Já sabemos, até aqui, que q = 0 é um máximo ou um mínimo local. Falta apenas sabermos se ele é um mínimo ou um máximo.
Para sabermos se ele é um mínimo ou um máximo, devemos investigar a segunda derivada da função no ponto q = 0.
R''(q) = - 6q + 120 [tex]\Rightarrow[/tex] R''(0) = 120 > 0
Como a segunda derivada no ponto q = 0 é positiva, temos que o ponto q = 0 é um MÍNIMO.
Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.