Answered

O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Junte-se à nossa plataforma de perguntas e respostas e obtenha informações precisas de especialistas em diversas áreas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Com os algarismos 1, 2, 3, 4 e 5 são formados números de três algarismos distintos. Um deles é escolhido ao acaso. a) Qual a probabilidade de ele ser par? b) Qual a probabilidade de ele ser ímpar? c) Qual a probabilidade de ele ser divisível por 5?

Sagot :

Celio
Temos 5 algarismos e queremos formar números de 3 algarismos distintos com eles.
Então devemos contar quantos números podemos fazer.Trata-se de um arranjo de 5 elementos tomados 3 a 3. Por que arranjo e não combinação? Porque a ordem faz diferença. Exemplo: 345 ≠ 543.

[tex] A_{5,3}=\frac{5!}{(5-3)!} = \frac{5.4.3.2!}{2!}=\boxed{60\,\text{n\'umeros}}[/tex]

A probabilidade é dada pelo número de casos que queremos analisar sobre o número total de casos, que é 60.

a) Queremos os números pares, ou seja, os terminados em 2 ou 4.

Terminados em 2: _ _ 1 (1 representa a única possibilidade que, neste caso, é 2)
Como já utilizamos um algarismo, restam 4.
Então fazemos: 4 × 3 × 1 = 12
Agora faça o mesmo para o 4: _ _ 1 ⇒ 4 × 3 × 1 = 12
Agora somamos as possibilidades: 12 + 12 = 24
Então a probabilidade é igual a:
[tex]\frac{24}{60}=\boxed{\frac{2}{5}}[/tex]

b) Queremos os números ímpares, ou seja, os terminados em 1, 3 ou 5.

Faremos o mesmo procedimento realizado na letra "a".
Para os números terminados em 1: _ _ 1 ⇒ 4 × 3 × 1 = 12
Para os números terminados em 3: _ _ 1 ⇒ 4 × 3 × 1 = 12
Para os números terminados em 5: _ _ 1 ⇒ 4 × 3 × 1 = 12
Somando tudo: 12 + 12 + 12 = 36
A probabilidade é igual a:
[tex]\frac{36}{60}=\boxed{\frac{3}{5}}[/tex]

c) Queremos os números divisíveis por 5, ou seja, os terminados em 5.

Mesmo procedimento realizado nas letras "a" e "b".
Para os números terminados em 5: _ _ 1 ⇒ 4 × 3 × 1 = 12
A probabilidade é igual a:
[tex]\frac{12}{60}=\boxed{\frac{1}{5}}[/tex]