O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Para descobrirmos a equação de uma circunferência, temos que ter seu centro e o raio. Porém, não temos nenhum dos dois, mas podemos calcular. Se os pontos A e B são os extremos de uma circunferência, seu ponto médio será o CENTRO dela. Após isso, podemos descobrir o raio, calculando a distância do centro a qualquer um dos pontos.
Calculando as coordenadas do centro:
[tex]P_{m} = (\frac{X_{a}+X_{b}}{2}; \frac{Y_{a}+Y_{b}}{2}) \\\\ P_{m} = (\frac{1+7}{2}; \frac{1+3}{2}) \\\\ P_{m} = (\frac{8}{2}; \frac{4}{2}) \\\\ \boxed{P_{m} = (4; 2)} \rightarrow coordenadas \ do \ centro[/tex]
Agora calculando a distância entre este ponto médio (que é também o centro) e qualquer um dos pontos (escolherei o A), podemos achar o raio:
[tex]d = \sqrt{(X_{c}-X_{a})^{2} + (Y_{c}-Y_{a})^{2}} \\\\ d = \sqrt{(4-1)^{2} + (2-1)^{2}} \\\\ d = \sqrt{(3)^{2} + (1)^{2}} \\\\ d = \sqrt{9 + 1} \\\\ \boxed{d = \sqrt{10}} \rightarrow raio \ da \ circunfer\^{e}ncia[/tex]
Jogando na fórmula:
[tex]\boxed{(X-X_{c})^{2} + (Y-Y_{c})^{2} = R^{2}} \\\\ (X-4)^{2} + (Y-2)^{2} = (\sqrt{10})^{2} \\\\ (X-4)^{2} + (Y-2)^{2} = 10 \\\\ distribuindo \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 = 10 \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 - 10 = 0 \\\\ x^{2} + y^{2} - 8x - 4y + 16 + 4 - 10 = 0 \\\\ \boxed{\boxed{x^{2} + y^{2} - 8x - 4y + 10 = 0}} \rightarrow equa\c{c}\~{a}o \ geral \ ou \ normal \ da \ circunfer\^{e}ncia[/tex]
Calculando as coordenadas do centro:
[tex]P_{m} = (\frac{X_{a}+X_{b}}{2}; \frac{Y_{a}+Y_{b}}{2}) \\\\ P_{m} = (\frac{1+7}{2}; \frac{1+3}{2}) \\\\ P_{m} = (\frac{8}{2}; \frac{4}{2}) \\\\ \boxed{P_{m} = (4; 2)} \rightarrow coordenadas \ do \ centro[/tex]
Agora calculando a distância entre este ponto médio (que é também o centro) e qualquer um dos pontos (escolherei o A), podemos achar o raio:
[tex]d = \sqrt{(X_{c}-X_{a})^{2} + (Y_{c}-Y_{a})^{2}} \\\\ d = \sqrt{(4-1)^{2} + (2-1)^{2}} \\\\ d = \sqrt{(3)^{2} + (1)^{2}} \\\\ d = \sqrt{9 + 1} \\\\ \boxed{d = \sqrt{10}} \rightarrow raio \ da \ circunfer\^{e}ncia[/tex]
Jogando na fórmula:
[tex]\boxed{(X-X_{c})^{2} + (Y-Y_{c})^{2} = R^{2}} \\\\ (X-4)^{2} + (Y-2)^{2} = (\sqrt{10})^{2} \\\\ (X-4)^{2} + (Y-2)^{2} = 10 \\\\ distribuindo \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 = 10 \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 - 10 = 0 \\\\ x^{2} + y^{2} - 8x - 4y + 16 + 4 - 10 = 0 \\\\ \boxed{\boxed{x^{2} + y^{2} - 8x - 4y + 10 = 0}} \rightarrow equa\c{c}\~{a}o \ geral \ ou \ normal \ da \ circunfer\^{e}ncia[/tex]
Neste caso o Centro da circunfeência é o ponto médio de AB:
xM=(1+7) / 2 = 4
yM=(1+3) / 2 = 2
Logo C(4,2)
O raio da circunferência é igual à metade do comprimento de AB
Calculando o comprimento de AB:
[tex]AB=\sqrt{(7-1)^2+(3-1)^2}\rightarrrow \sqrt{36+4}=\sqrt{40}=2\sqrt{10}[/tex]
Logo o raio da circunferência é raiz de 10. Finalmente escrevendo-se a equação reduzida da circunferência:
[tex](x-4)^2+(y-2)^2=10[/tex]
De onde podemos escrever a equação geral da reta:
[tex](x-4)^2+(y-2)^2=10 \rightarrow x^2-8x+16+y^2-4y+4-10=0 \rightarrow x^2+y^2-8x-4y+10=0[/tex]
xM=(1+7) / 2 = 4
yM=(1+3) / 2 = 2
Logo C(4,2)
O raio da circunferência é igual à metade do comprimento de AB
Calculando o comprimento de AB:
[tex]AB=\sqrt{(7-1)^2+(3-1)^2}\rightarrrow \sqrt{36+4}=\sqrt{40}=2\sqrt{10}[/tex]
Logo o raio da circunferência é raiz de 10. Finalmente escrevendo-se a equação reduzida da circunferência:
[tex](x-4)^2+(y-2)^2=10[/tex]
De onde podemos escrever a equação geral da reta:
[tex](x-4)^2+(y-2)^2=10 \rightarrow x^2-8x+16+y^2-4y+4-10=0 \rightarrow x^2+y^2-8x-4y+10=0[/tex]
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.