Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

Sabe-se que os pontos A( 1;1) e B (7;3) são extremos de um diâmetro de uma circunferência. Determine a equação geral dessa circunferência

Sagot :

Para descobrirmos a equação de uma circunferência, temos que ter seu centro e o raio. Porém, não temos nenhum dos dois, mas podemos calcular. Se os pontos A e B são os extremos de uma circunferência, seu ponto médio será o CENTRO dela. Após isso, podemos descobrir o raio, calculando a distância do centro a qualquer um dos pontos.

Calculando as coordenadas do centro:

[tex]P_{m} = (\frac{X_{a}+X_{b}}{2}; \frac{Y_{a}+Y_{b}}{2}) \\\\ P_{m} = (\frac{1+7}{2}; \frac{1+3}{2}) \\\\ P_{m} = (\frac{8}{2}; \frac{4}{2}) \\\\ \boxed{P_{m} = (4; 2)} \rightarrow coordenadas \ do \ centro[/tex]

Agora calculando a distância entre este ponto médio (que é também o centro) e qualquer um dos pontos (escolherei o A), podemos achar o raio:

[tex]d = \sqrt{(X_{c}-X_{a})^{2} + (Y_{c}-Y_{a})^{2}} \\\\ d = \sqrt{(4-1)^{2} + (2-1)^{2}} \\\\ d = \sqrt{(3)^{2} + (1)^{2}} \\\\ d = \sqrt{9 + 1} \\\\ \boxed{d = \sqrt{10}} \rightarrow raio \ da \ circunfer\^{e}ncia[/tex]

Jogando na fórmula:

[tex]\boxed{(X-X_{c})^{2} + (Y-Y_{c})^{2} = R^{2}} \\\\ (X-4)^{2} + (Y-2)^{2} = (\sqrt{10})^{2} \\\\ (X-4)^{2} + (Y-2)^{2} = 10 \\\\ distribuindo \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 = 10 \\\\ x^{2} - 8x + 16 + y^{2} - 4y + 4 - 10 = 0 \\\\ x^{2} + y^{2} - 8x - 4y + 16 + 4 - 10 = 0 \\\\ \boxed{\boxed{x^{2} + y^{2} - 8x - 4y + 10 = 0}} \rightarrow equa\c{c}\~{a}o \ geral \ ou \ normal \ da \ circunfer\^{e}ncia[/tex]
Neste caso o Centro da circunfeência é o ponto médio de AB:
xM=(1+7) / 2 = 4
yM=(1+3) / 2 = 2

Logo C(4,2)

O raio da circunferência é igual à metade do comprimento de AB

Calculando o comprimento de AB:


[tex]AB=\sqrt{(7-1)^2+(3-1)^2}\rightarrrow \sqrt{36+4}=\sqrt{40}=2\sqrt{10}[/tex]

Logo o raio da circunferência é raiz de 10. Finalmente escrevendo-se a equação reduzida da circunferência:

[tex](x-4)^2+(y-2)^2=10[/tex]

De onde podemos escrever a equação geral da reta:

[tex](x-4)^2+(y-2)^2=10 \rightarrow x^2-8x+16+y^2-4y+4-10=0 \rightarrow x^2+y^2-8x-4y+10=0[/tex]