O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Junte-se à nossa plataforma de perguntas e respostas e conecte-se com profissionais prontos para fornecer respostas precisas para suas dúvidas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Quando dizemos que a matriz é "3 por 2", queremos dizer que ela tem 3 linhas e 2 colunas. Vamos lá, vamos montar o esqueleto desta matriz:
[tex]A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}[/tex]
E descobrir os elementos de acordo com a lei dada:
[tex]a_{11} \Rightarrow i=j \Rightarrow \boxed{a_{11} = 1} \\\\ a_{12} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{12} = 1^{2} \Rightarrow \boxed{a_{12} = 1} \\\\ a_{21} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{21} = 2^{2} \Rightarrow \boxed{a_{21} = 4} \\\\ a_{22} \Rightarrow i=j \Rightarrow \boxed{a_{22} = 1}[/tex]
[tex]a_{31} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{31} = 3^{3} \Rightarrow \boxed{a_{31} = 9} \\\\ a_{32} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{32} = 3^{3} \Rightarrow \boxed{a_{32} = 9}[/tex]
Esta matriz então fica:
[tex]A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \\ 9 & 9 \end{pmatrix}[/tex]
[tex]A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}[/tex]
E descobrir os elementos de acordo com a lei dada:
[tex]a_{11} \Rightarrow i=j \Rightarrow \boxed{a_{11} = 1} \\\\ a_{12} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{12} = 1^{2} \Rightarrow \boxed{a_{12} = 1} \\\\ a_{21} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{21} = 2^{2} \Rightarrow \boxed{a_{21} = 4} \\\\ a_{22} \Rightarrow i=j \Rightarrow \boxed{a_{22} = 1}[/tex]
[tex]a_{31} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{31} = 3^{3} \Rightarrow \boxed{a_{31} = 9} \\\\ a_{32} \Rightarrow i \neq j \Rightarrow a_{ij} = i^{2} \Rightarrow a_{32} = 3^{3} \Rightarrow \boxed{a_{32} = 9}[/tex]
Esta matriz então fica:
[tex]A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \\ 9 & 9 \end{pmatrix}[/tex]
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.