O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.
Sagot :
Usando a relação fundamental:
[tex]\boxed{sen^{2}x + cos^{2}x = 1}[/tex]
Podemos achar o cosx. Vamos substituir:
[tex]sen^{2}x + cos^{2}x = 1 \\\\ (-\frac{12}{13})^{2} + cos^{2}x = 1 \\\\ \frac{144}{169} + cos^{2}x = 1 \\\\ cos^{2}x = 1 - \frac{144}{169} \\\\ cos^{2}x = \frac{169}{169} - \frac{144}{169} \\\\ cos^{2}x = \frac{25}{169} \\\\ cosx = \pm \sqrt{\frac{25}{169}} \\\\ cosx = \pm \frac{5}{13}[/tex]
O cosx pode ser negativo ou positivo. Porém, como o x está no terceiro quadrante, cos e sen são negativos.
[tex]\therefore \boxed{\boxed{cosx = -\frac{5}{13}}}[/tex]
[tex]\boxed{sen^{2}x + cos^{2}x = 1}[/tex]
Podemos achar o cosx. Vamos substituir:
[tex]sen^{2}x + cos^{2}x = 1 \\\\ (-\frac{12}{13})^{2} + cos^{2}x = 1 \\\\ \frac{144}{169} + cos^{2}x = 1 \\\\ cos^{2}x = 1 - \frac{144}{169} \\\\ cos^{2}x = \frac{169}{169} - \frac{144}{169} \\\\ cos^{2}x = \frac{25}{169} \\\\ cosx = \pm \sqrt{\frac{25}{169}} \\\\ cosx = \pm \frac{5}{13}[/tex]
O cosx pode ser negativo ou positivo. Porém, como o x está no terceiro quadrante, cos e sen são negativos.
[tex]\therefore \boxed{\boxed{cosx = -\frac{5}{13}}}[/tex]
Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.