O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

determine m de modo que o valor minimo da função f(x)= x2-2x+m, admita -4 como valor minimo?

Sagot :

Celio
Olá, Henrique.

A função f(x)= x²-2x+m é um polinômio de segundo grau e seu gráfico é uma parábola com a concavidade voltada para cima, uma vez que o coeficiente que acompanha o termo x² é positivo. 

A abscissa do vértice da parábola, portanto, é o valor de x para o qual f(x) tem valor mínimo.

Vamos, portanto, determinar a abscissa (valor de x), de tal forma que o valor mínimo de f(x) para a abscissa do vértice da parábola seja -4.

[tex]f(x)= x^2-2x+m=ax^2+bx+c \Rightarrow a=1,b=-2,c=m \\\\ x_{v\'ertice}=-\frac{b}{2a}=-\frac{-2}{2}=\boxed{1}\\\\ f(x_{v\'ertice})=1-2-m=-4 \Rightarrow \boxed{m=3}[/tex]
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.