O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
Bom, para facilitar nosso cálculo, vamos passar todas as equações para a forma reduzida e depois compara-las.
coeficientes angulares e lineares iguais = paralelas coincidentes
coeficiente angular igual e linear diferente = paralelas distintas
coeficientes angulares e lineares diferentes = concorrentes
Lembrando que: na forma reduzida. coeficiente angular é o número acompanhado do x (m). E linear é o sozinho (q)
a) [tex](r) \ x-3y = 0 \\\ 3y = x \\\\ \boxed{y = \frac{1x}{3}} \\\\ m = \frac{1}{3} \ \ \ q = 0 \\\\\\ (s) \ \boxed{y = 3x} \\\\ m = 3 \ \ \ q = 0 \\\\ coeficiente \ angular: diferentes \\ coeficiente \ linear: diferentes \\\\\\ \boxed{\boxed{retas \ concorrentes}}[/tex]
b) [tex](r) \ x + 3 = 0 \\\\ \boxed{x = -3} \\\\ reta \ vertical \\\\\\ (s) \ x - 1 = 0 \\\\ \boxed{x = 1} \\\\ reta \ vertical \\\\\\ Sendo \ as \ duas \ retas \ verticais, \ s\~{a}o \ \boxed{\boxed{paralelas \ distintas}}[/tex]
c) [tex](r) \ 2x-y+1 = 0 \\\\ \boxed{y = 2x+1} \\\\ m = 2 \\ q = 1 \\\\\\ (s) \ \boxed{y = -\frac{1x}{2} - 3} \\\\ m = -\frac{1}{2} \\\\ q = -3 \\\\ \boxed{\boxed{retas \ concorrentes}}[/tex]
As retas são concorrentes, concorrentes e paralelas.
As retas podem ser paralelas, coincidentes ou concorrentes.
Para definirmos qual a posição relativa entre duas retas, podemos utilizar os vetores normais a elas.
Sendo ax + by = c uma reta, temos que o seu vetor normal é (a,b).
Se os vetores forem múltiplos, as retas podem ser paralelas ou coincidentes. Se os vetores não forem múltiplos, as retas são concorrentes.
Para determinar se os vetores são múltiplos ou não, basta calcular o determinante entre eles: se for igual a 0, então são múltiplos. Se for diferente de 0, então não são múltiplos.
a) De x - 3y = 0, temos o vetor (1,-3).
De y = 3x + 2 temos que -3x + y = 2. Logo, o vetor é (-3,1).
Os vetores não são múltiplos. Portanto, r e s são concorrentes.
b) De 2x - y + 1 = 0 temos o vetor (2,-1).
De y = -x/2 - 3 temos que x + 2y = -6. Logo, o vetor é (1,2).
Os vetores não são múltiplos. Portanto, r e s são concorrentes.
c) De x + 3 = 0 temos o vetor (1,0).
De x - 1 = 0 temos o vetor (1,0).
Como os vetores são iguais e r: x = -3 e s: x = 1, então r e s são paralelas.
Para mais informações sobre retas, acesse: https://brainly.com.br/tarefa/14397575

Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.