O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.
Sagot :
Olá, Lihmachado.
Um número imaginário puro é um número complexo que não possui parte real, apenas parte imaginária, ou seja:
[tex]z=bi,b\in\mathbb{R}[/tex]
Tomemos dois números complexos quaisquer:
[tex]z_1=a_1+b_1i,a_1,b_1\in\mathbb{R}\\z_2=a_2+b_2i,a_2,b_2\in\mathbb{R}[/tex]
Vamos somá-los e analisar o resultado:
[tex]z_1+z_2=a_1+b_1i+a_2+b_2i=(a_1+a_2)+(b_1+b_2)i[/tex]
Assim, para que [tex]z_1+z_2[/tex] seja imaginário puro, devemos ter:
[tex]\begin{cases} a_1+a_2=0 \Rightarrow \boxed{a_1=-a_2}\\\\ b_1+b_2 \neq 0 \Rightarrow \boxed{b_1\neq -b_2} \end{cases}[/tex]
Um número complexo tem a forma
z = a +bi
onde:
a = parte real
b = parte imaginária
Número real = número complexo onde a parte imaginária é nula
Número imaginario puro = número complexo onde a parte real é nula
Na soma o substração de números complexos, as operações são realizadas independentemente na parte real e na imaginária.
Então, a soma de dois números complexos será um imaginário puro quando a parte real de uma das parcelas seja o oposto da outra e os coeficientes reais da parte imaginária sejam diferentes.
Exemplo:
z1 = 5 - 7i
z2 = - 5 + 12i
z1 + z2 = (5 - 5) + (-7 + 12)i
z1 + z2 = 5i IMAGINÁRIO PURO
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.