O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
como temos uma função quadratica, ela forma uma parábola. Sabemos que a parábola tem um vértice, que tem uma coordenada x e y. Para sabermos a altura máxima da bola, temos que achar o y do vértice, através da formula -delta/4a
h(x)=-x²+4x+20
[tex]-x^{2}+4x+20\\\\ \Delta = b^{2}-4ac\\ \Delta = 4^{2}-4*-1*20\\ \Delta = 16-(-80)\\ \Delta = 96\\\\ Yv = \frac{-\Delta}{4a} = \frac{-96}{-4} = 24[/tex]
Altura máxima = 24 metros
Resposta:
24 <------- altura máxima 24 metros
Explicação passo-a-passo:
.
=> Temos a equação:
- X² + 4X + 20
..note que a < 0 ...Logo a concavidade do gráfico está virada para baixo
...assim o seu ponto máximo vai ser o valor de "Y" do seu vértice ..ou seja Yv
...também sabemos que Yv = - (Δ)/4a
como Δ = b² - 4ac
então, - (Δ)/4a , será:
Yv = - (4² - 4.(-1).(20))/4.(-1)
Yv = - (16 + 84)/-4
Yv = -96/-4
Yv = 24 <------- altura máxima 24 metros
Espero ter ajudado
Resposta garantida por Manuel272
(colaborador regular do brainly desde Dezembro de 2013)
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.