O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Demonstre que as matrizes


|2  0  0|
|a -1  0|
|b  c  3|

&


|1   1   2|
|-2  0  -1|
|1   3   5|

não são linha-equivalentes.

   Preciso muito da resposta.Alguma ajuda galera?


Sagot :

Celio

Olá. AgenteRJ.

 

Para que duas matrizes sejam linha-equivalentes, qualquer linha de uma deve poder ser escrita como uma combinação linear das linhas da outra.

 

Tomemos, por exemplo, a primeira linha da primeira matriz, [2 0 0].

 

Devem existir, portanto,  [tex]\lambda_1,\lambda_2,\lambda_3[/tex]  únicos tais que:

 

[tex](2,0,0)=\lambda_1(1,1,2)+\lambda_2(-2,0,-1)+\lambda_3(1,3,5)\Rightarrow\\\\ \begin{cases} \lambda_1-2\lambda_2+\lambda_3=2 \\ \lambda_1+0\lambda_2+3\lambda_3=0 \\ 2\lambda_1-\lambda_2+5\lambda_3=0 \\ \end{cases}[/tex]

 

Ocorre, entretanto, que o determinante deste sistema é nulo, pois:

 

[tex]\begin{vmatrix} 1 &-2& 1 \\ 1 &0& 3 \\ 2 &-1 &5 \end{vmatrix} = \underbrace{-12-1-(-3-10)}_{\text{Regra de Sarrus}}=-13+13=0[/tex]

 

Como o determinante deste sistema é nulo, então não existem  [tex]\lambda_1,\lambda_2,\lambda_3[/tex]  únicos que satisfazem o sistema.

 

Ou seja: a linha [2 0 0] da primeira matriz não pode ser escrita como combinação linear das linhas da segunda matriz.

 

Isto é o bastante, portanto, para podermos afirmar que as duas matrizes não são linha-equivalentes.