O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Dê o domínio da função,em cada caso:

 

A)f(x) = log 1/2  log 2(x²-1)

 

B)f(x)= log log (x² + x +2)

 

C) f(x)= √log(x²-x-1)

 

D)f(x)= log log(6x²-13x+7)

 

Se possível,envie o passo a passo.

 

P.S: recompensaria com mais pontos,se eu pudesse.

 

Boa noite!



Sagot :

Celio

Olá, AgenteRJ.

A função logarítmica está definida apenas para logaritmandos maiores que zero.

 

Explico:

 

[tex]\text{Se }a^b=c,\text{com }a>0,\text{ ent\~ao necessariamente devemos ter }c>0,[/tex]

[tex]\text{ pois n\~ao \'e poss\'ivel }a^b\leq0,a>0,\text{ para nenhum valor de }b.[/tex]

 

[tex]\text{Como }a^b=c \Rightarrow b=\log_ac,\text{ ent\~ao}:[/tex]

[tex]\log_ac\text{ existe apenas se }c>0.[/tex]

 

[tex]\text{Em outras palavras, para }a>0\ \ D(\log_ac)=\{c\in\mathbb{R}|c>0\}, \text{ sendo}\\ D\text{ o dom\'inio}.[/tex]

 

Os domínios de cada uma das funções do exercício, portanto, são os subconjuntos dos números reais tais que seus respectivos logaritmandos sejam maiores que zero.

 

_________________________________________________________

 

[tex]A)\ f(x) = \log \frac12 \log 2(x\²-1)\\\\ x^2-1=(x+1)(x-1) [/tex]

 

[tex](x+1)(x-1)>0\\\\ \underline{\text{An\'alise do sinal}}:\\\\ .....(-).......-1...(+)....|.....(+)........\ (x+1) \\ .....(-)...........|....(-)....1....(+)........\ (x-1) \\ .....(+).......-1...(-)....1....(+)........\ (x+1)(x-1)[/tex]

 

[tex]\therefore\boxed{D=\{x\in\mathbb{R}|x<-1\text{ ou }x>1\}}[/tex]

_________________________________________________________

 

[tex]B)\ f(x)= \log \log (x\² + x +2)[/tex]

 

Por causa do outro logaritmo, devemos ter:

 

[tex]\log(x^2+x+2)>0 \Rightarrow x^2+x+2>1 \Rightarrow x^2+x+1>0\\\\[/tex]

 

Como [tex]\Delta=1-4=-3<0,[/tex] não há raízes.


Como a parábola tem concavidade voltada para cima, então:


[tex]x^2+x+1>0,\forall x[/tex]


[tex]\therefore\boxed{D=\mathbb{R}}[/tex]

__________________________________________________________

 

[tex]C)\ f(x)= \sqrt{\log(x\²-x-1)}[/tex]

 

Por causa da raiz quadrada, devemos ter:

 

[tex]\log(x\²-x-1)\geq0 \Rightarrow x\²-x-1\geq1 \Rightarrow x^2-x-2\geq0 [/tex]

 

Raízes: [tex]x=\frac{1\pm\sqrt9}2=2\text{ ou }-1[/tex]

 

Como é uma parábola com concavidade para cima, então entre as raízes temos:

 

[tex]x^2-x-2\leq0 \Rightarrow \boxed{D=\{x\in\mathbb{R}|x\leq-1\text{ ou }x\geq2\}}[/tex]

________________________________________________________________

 

[tex]D)\ f(x)= \log \log(6x\²-13x+7)[/tex]

 

Por causa do outro logaritmo, devemos ter:


[tex]\log(6x^2-13x+7)>0 \Rightarrow 6x^2-13x+7>1 \Rightarrow 6x^2-13x+6>0[/tex]

 

Raízes:


[tex]x=\frac{13\pm\sqrt{169-144}}{12}=\frac32\text{ ou }\frac12[/tex]


Como é uma parábola com concavidade para cima, então entre as raízes temos:

 

[tex]6x^2-13x+6\leq0 \Rightarrow \boxed{D=\left\{x\in\mathbb{R}|x<\frac12\text{ ou }x>\frac32\right\}} [/tex]

Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.