Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

uma reta do plano cartesiano passa pelo ponto A(2, -5) e tem 135° de inclinação. Essa reta é representada pela equação?



Sagot :

neste caso a reta é a bissetriz dos 2o e 4o quadrante. Seu coeficiente angulae é -1

 

 

Aplicando-se a equação fundamental da reta:

 

 

y+5=-1(x-2)

y+5=-x+2

x+5+5-2=0

x+y+3=0

 

 

 

 

 

 

Celio

Olá, Lilian.

 

A equação geral da reta é y = mx + p, onde m é o coeficiente angular  e p o coeficiente linear.

 

O coeficiente angular da reta é a tangente de seu ângulo de inclinação, ou seja:

 

[tex]m=\tan135\º=\tan(180\º-45\º)=\frac{\tan180\º-\tan45\º}{1+\tan180\º\tan45\º}=\frac{0-1}{1+0\cdot1}=-1[/tex]

 

Vamos obter agora o coeficiente linear a partir do ponto dado A(2,-5):

 

[tex]y=mx+p \Rightarrow -5=(-1)\cdot2+p \Rightarrow p=-5+2=-3[/tex]

 

A reta é representada, portanto, pela equação:

 

[tex]\boxed{y=-x-3}[/tex]