wuvlp
Answered

O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.

Seja f(n) a soma dos n termos de uma progressão aritimetica. Demonstrar que f(n3)-3f(n2)3f(n1)-f(n)=0

Sagot :

Celio

Olá, wuvlp. Faltou os sinais de adição. Vamos lá:

 

[tex] f(n + 3) - 3f(n + 2) + 3f(n + 1) - f(n) =[/tex]

 

[tex]= \frac{(a_1 + a_{n + 3})}{2} - 3 \cdot \frac{(a_1 + a_{n + 2})}{2} + 3 \cdot \frac{(a_1 + a_{n + 1})}{2} - \frac{(a_1 + a_n)}{2}= [/tex]

 

[tex]= \frac12 \cdot ( a_1 + a_n + 3r - 3a_1 - 3a_n - 6r + 3a_1 + 3a_n + 3r - a_1 - a_n )= [/tex]

 

[tex]= 0[/tex]