O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.

Dada a P.G (1,2,4...)calcule o décimo termo?

Sagot :

Olá!!

 

a1=1

q=2/1=2

n=10

a10=?

 

Usando a formula vai ficar.

[tex]An=a1.q^(^n^-^1^)\\ a10=1.2^1^0^-^1\\ a10=2^9\\ a10=512[/tex]

Olá :)
✩✩✩✩✩
✩✩✩✩✩

• O termo geral da progressão

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\large{\mathsf{a_n = a_1 \cdot q^{n - 1} } }[/tex]

O nosso primeiro passo é achar a razão da sucessão, o quociente entre um termo e o seu antecedente, matematicamente :

[tex] \mathsf{q = \dfrac{a_2}{a_1} } \\ \\ \mathsf{q = \dfrac{2}{1} } \\ \\ \mathsf{q = 2} \\ [/tex]

Destarte, podemos agora achar o décimo termo, com a equação do termo geral, teremos,

[tex]\Leftrightarrow \mathsf{a_{10} = 1 \cdot 2^{ \green{10 - 1}} } \\ \\ \Leftrightarrow \mathsf{a_{10} = 2^{ \green{9}}} \\ [/tex]

[tex] \Leftrightarrow \boxed{\boxed{ \mathsf{a_{10} = 512}} }} \end{array}\qquad\checkmark [/tex]



Espero ter ajudado :)
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
:::::::::::::::::::[tex] \red{\mathtt{Bons \: estudos}}[/tex]:::::::::::::::::::
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.