O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

(Fgv 2020) Analise o gráfico, que apresenta a variação da pressão atmosférica terrestre em função da altitude.
Sabe-se que a densidade do ar, à pressão de 1,0 atm e a a 0ºC, é 1,30 kg/m³. Considerando que o ar se comporte como um gás ideal, sua densidade a uma altitude de 3.500 m e a 0ºC é, aproximadamente,

a) 0,46 kg/m³
b) 0,65 kg/m³
c) 0,85 kg/m³
d) 0,92 kg/m³
e) 0,98 kg/m³


Fgv 2020 Analise O Gráfico Que Apresenta A Variação Da Pressão Atmosférica Terrestre Em Função Da Altitude Sabese Que A Densidade Do Ar À Pressão De 10 Atm E A class=

Sagot :

Realizando os cálculos necessários, encontramos que a densidade do ar a uma altitude de 3500m e a 0ºC é aproximadamente 0,85kg/m³, conforme a alternativa C.

Equação de Clapeyron

É uma equação que relaciona as condições de pressão, volume, números de mols e temperatura de um gás ideal.

A equação de Clapeyron é dada por:

[tex]\boxed{\large\displaystyle\text{$\mathsf{PV = nRT}$}}[/tex]

Em que:

[tex]\displaystyle\text{$\mathsf{P = pressao}$}\\\displaystyle\text{$\mathsf{V = volume}$}\\\displaystyle\text{$\mathsf{n =quantidade~de~mols}$}\\\displaystyle\text{$\mathsf{R = constante~ideal~dos~gases}$}\\\displaystyle\text{$\mathsf{T=temperatura}$}[/tex]

Com base na equação de Clapeyron, podemos extrair o cálculo da densidade de um corpo:

[tex]\large\displaystyle\text{$\mathsf{PV = nRT}$}\\\\\large\displaystyle\text{$\mathsf{PV = \dfrac{m}{M}RT}$}\\\\\\\large\displaystyle\text{$\mathsf{\dfrac{PV}{m} = \dfrac{RT}{M}}$}\\\\\\\large\displaystyle\text{$\mathsf{\dfrac{\orange{m}}{P\orange{V}} = \dfrac{M}{RT}}$}\\\\\\\large\displaystyle\text{$\mathsf{\dfrac{\orange{d}}{P} = \dfrac{M}{RT}}$}\\\\\\\boxed{\large\displaystyle\text{$\mathsf{d = \dfrac{PM}{RT}}$}}[/tex]

Em que m representa a massa do corpo e M representa a massa molar.

Resolução do exercício

À pressão de 1 atm (no nível do mar), temos que:

  • d = 1,30kg/m³
  • P = 1 atm
  • T = 0ºC → Convertendo para Kelvin = 273 K

Aplicando a fórmula da densidade:

[tex]\large\displaystyle\text{$\mathsf{d = \dfrac{PM}{RT}}$}\\\\\\\large\displaystyle\text{$\mathsf{1,30 = \dfrac{1 . M}{R . 273}}$}\\\\\\\large\displaystyle\text{$\mathsf{1,30 = \dfrac{M}{273R}}$}[/tex]

Isolando a massa molar M na equação:

[tex]\boxed{\large\displaystyle\text{$\mathsf{M = 1,30 . 273R}$}}[/tex]

A altitude de 3500 m, temos que:

  • d = ?
  • P = 0,65 atm
  • T = 0ºC = 273 K

Aplicando a fórmula:

[tex]\large\displaystyle\text{$\mathsf{d = \dfrac{PM}{RT}}$}\\\\\\\large\displaystyle\text{$\mathsf{d = \dfrac{0,65 . M}{R . 273}}$}[/tex]

Como M = 1,30 . 273R, podemos substituir:

[tex]\large\displaystyle\text{$\mathsf{d = \dfrac{0,65 . M}{R . 273}}$}\\\\\\\large\displaystyle\text{$\mathsf{d = \dfrac{0,65~.~ 1,30 . \blue{\backslash\!\!\!2\backslash\!\!\!7\backslash\!\!\!3~\backslash\!\!\!\!R}}{\blue{\backslash\!\!\!\!R . \backslash\!\!\!2\backslash\!\!\!7\backslash\!\!\!3}}}$}\\\\\\\large\displaystyle\text{$\mathsf{d = 0,65~.~1,30}$}\\\large\displaystyle\text{$\mathsf{d=0,845}$}\\\boxed{\large\displaystyle\text{$\mathsf{d \approx 0,85kg/m^{3}}$}}[/tex]

A densidade do ar a uma altitude de 3500m a 0ºC é aproximadamente 0,85 kg/m³.

Gabarito: alternativa C.

⭐ Espero ter ajudado! ⭐

Veja mais sobre a equação de Clapeyron em:

https://brainly.com.br/tarefa/7148364

View image alissonsiv
Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.