O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.
Sagot :
a) O núcleo da transformação linear é {0} e a imagem é [tex]\mathbb{R}^2[/tex].
b) Pelo teorema do núcleo e da imagem podemos afirmar que T é um isomorfismo e a inversa de T é [tex]T^{-1} (x, y) = (\dfrac{2x + y}{5}, \dfrac{-x + 2y}{5})[/tex].
O teorema do núcleo e da imagem
O núcleo é o conjunto de todos os vetores cuja imagem é o vetor nulo. Portanto, para a transformação linear dada na questão, temos que:
[tex]ker(T) = \{ 0 \}[/tex]
De fato, o sistema de equações lineares associado é:
2x - y = 0
x + 2y = 0
E a única solução desse sistema é x = y = 0.
Pelo teorema do núcleo e da imagem, podemos escrever:
[tex]dim(ker(T)) + dim(Im(T)) = 2[/tex]
Como a dimensão do núcleo é 0, temos que, a dimensão da imagem é 2 e, portanto, a imagem dessa transformação é igual a [tex]\mathbb{R}^2[/tex]
Observando o núcleo e a imagem obtidos, podemos afirmar que a transformação é sobrejetora e injetora, logo, é um isomorfismo.
Como:
2x - y = 1
x + 2y = 0
x = 2/5
y = -1/5
E:
2x - y = 0
x + 2y = 1
x = 1/5
y = 2/5
A transformação inversa de T é:
[tex]T^{-1} (x, y) = (\dfrac{2x + y}{5}, \dfrac{-x + 2y}{5})[/tex]
Para mais informações sobre transformação linear, acesse: https://brainly.com.br/tarefa/52500661
#SPJ1

Esperamos que esta informação tenha sido útil. Sinta-se à vontade para voltar a qualquer momento para obter mais respostas às suas perguntas e preocupações. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.