Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.
Sagot :
a) O núcleo da transformação linear é {0} e a imagem é [tex]\mathbb{R}^2[/tex].
b) Pelo teorema do núcleo e da imagem podemos afirmar que T é um isomorfismo e a inversa de T é [tex]T^{-1} (x, y) = (\dfrac{2x + y}{5}, \dfrac{-x + 2y}{5})[/tex].
O teorema do núcleo e da imagem
O núcleo é o conjunto de todos os vetores cuja imagem é o vetor nulo. Portanto, para a transformação linear dada na questão, temos que:
[tex]ker(T) = \{ 0 \}[/tex]
De fato, o sistema de equações lineares associado é:
2x - y = 0
x + 2y = 0
E a única solução desse sistema é x = y = 0.
Pelo teorema do núcleo e da imagem, podemos escrever:
[tex]dim(ker(T)) + dim(Im(T)) = 2[/tex]
Como a dimensão do núcleo é 0, temos que, a dimensão da imagem é 2 e, portanto, a imagem dessa transformação é igual a [tex]\mathbb{R}^2[/tex]
Observando o núcleo e a imagem obtidos, podemos afirmar que a transformação é sobrejetora e injetora, logo, é um isomorfismo.
Como:
2x - y = 1
x + 2y = 0
x = 2/5
y = -1/5
E:
2x - y = 0
x + 2y = 1
x = 1/5
y = 2/5
A transformação inversa de T é:
[tex]T^{-1} (x, y) = (\dfrac{2x + y}{5}, \dfrac{-x + 2y}{5})[/tex]
Para mais informações sobre transformação linear, acesse: https://brainly.com.br/tarefa/52500661
#SPJ1
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.