Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade de especialistas dedicados em nossa plataforma de perguntas e respostas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Com o estudo sobre combinação repetição e equações lineares foi possível determinar o número de maneiras diferentes de alocação que é 70.
Combinação com repetição
Quando temos n elementos distintos, e queremos formar grupos com k elementos não necessariamente distintos, onde a ordem dos elementos dos grupos formados não é importante, portanto, não é feita a permutação dos k elementos dos grupos formados.
[tex]C_{n,k}^{* }=\begin{pmatrix}n+k-1\\ k\end{pmatrix}=C^{* }_{n,k}=C_{n+k-1,k}[/tex]
Equações lineares
Seja [tex]x_1+x_2+.....+x_k=n[/tex] onde [tex]n\in \mathbb{N}^*[/tex]. Chamaremos de solução inteira da equação a k-upla de inteiros [tex]\left(\alpha _1,\alpha _2,....,\alpha _k\right)[/tex] tal que [tex]\alpha _1+\alpha _2+....+\alpha _k=n[/tex]
Sendo assim podemos resolver o exercício proposto.
[tex]\begin{cases}x_1\:+\:x_2\:+\:x_3\:+\:x_4\:+\:x_5\:=\:9&\\ x_1\:=\:a+1\:,\:x_2\:=\:b+1\:,...,\:x_5\:=\:e+1&\\ a\:+\:b\:+\:c\:+\:d\:+\:e\:=\:4&\end{cases}[/tex]
[tex]CRn,p\:=\:C\left(n+p-1,p\right)\:\Rightarrow \:CR5,4\:=\:C8,4\:=\:70[/tex]
Saiba mais sobre combinação com repetição:https://brainly.com.br/tarefa/12181003
#SPJ5
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.