O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.

O método da indução finita é um procedimento matemático utilizado para provar propriedades que são verdadeiras para uma sequência de objetos DESTCH, Denise Trevisoli. CRAVEIRO, Irene Magalhães. KATO, Lilian Akemi. SCHULZ, Rodrigo André. RUIZ, Simone Francisco. Análise Matemática. Maringá: Unicesumar, 2020. Em vista do texto acima, assinale a alternativa que apresenta corretamente a relação entre as asserções abaixo. 1 - Para todo n EN a soma dos números 1+3+5+7+...+(2n-1)+... =n² PORQUE II - Definido P(n)=1+3+5+7+...+2n-1+... =n², tem-se que P(1) é verdadeiro, pois 1=1².
alguém sabe?​


Sagot :

Resposta: veja este arquivo lá tem explicação

https://homepages.dcc.ufmg.br/~loureiro/md/md_LE4_Solucao.pdf

Explicação passo a passo:

Resposta:

Alternativa 1:

As asserções I e II são verdadeiras e a asserção II é uma justificativa correta para I.

Explicação passo a passo:

(c) P(n) : 1 + 3 + 5 + 7 + · · · + (2n − 1) = n

2

.

Temos que P(1), P(2), P(3), P(4), . . . , P(10) são verdadeiras.

Aqui sabemos precisamente o que significa a sentença aberta P(n),

apesar dos pontinhos na sua definição. Ela significa:

“A soma dos n primeiros números ímpares é igual a n

2

.”

Você consegue visualizar algum número natural m tal que P(m)

seja falsa? Bem, após mais algumas tentativas, você se convencerá

de que esta fórmula tem grandes chances de ser verdadeira para todo

número natural n; ou seja, P(n) é verdadeira para todo n ∈ N.

Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.