Descubra respostas para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais confiável e eficiente para todas as suas necessidades. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.
Sagot :
Os candidatos podem ser aprovados de 252 jeitos diferentes - alternativa e.
Combinação simples
Quando necessita-se fazer uma combinação onde a ordem não importa, utiliza-se a combinação simples. Para isto, utiliza-se a fórmula:
[tex]$\displaystyle Cn,p= \frac{n!}{p!(n-p)!} $[/tex], onde:
- n é o número total de elementos contidos no conjunto;
- p é o total de elementos contidos no subconjunto.
Resolução do Exercício
Dados do enunciado:
- Número total de candidatos (n) = 10;
- Número total de vagas (p) = 5
Logo, a quantidade de grupos diferentes que poderá ocorrer a aprovação é:
[tex]$\displaystyle C10,5= \frac{10!}{5!(10-5)!} $[/tex]
[tex]$\displaystyle C10,5= \frac{10!}{5!*5!} $[/tex]
[tex]$\displaystyle C10,5= \frac{10*9*8*7*6*5!}{5!*5!} $[/tex]
Cortando o 5! presente no numerador e no denominador da fração:
[tex]$\displaystyle C10,5= \frac{10*9*8*7*6}{5!} $[/tex]
[tex]$\displaystyle C10,5= \frac{3024}{120} $[/tex]
C10,5 = 252 maneiras.
Para melhor fixação do conteúdo você pode ver outra pergunta sobre combinação simples no link: brainly.com.br/tarefa/31661661
Bons estudos!
#SPJ1
Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.