O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.
Sagot :
A soma infinita da série telescópica [tex]\sum_{n=1}^{\infty}\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^2+n}}[/tex] é igual a 1.
Séries telescópica
Como o problema apresenta, uma série telescópica é aquela que não é necessário calcular todos os termos, pois os termos intermediários se cancelam. Sendo assim, considere a série do problema, que pode ser reescrita como:
[tex]\sum_{n=1}^{\infty}\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^2+n}}\\=\sum_{n=1}^{\infty}\sqrt{\frac{n+1}{n(n+1)}}-\sum_{n=1}^{\infty}\sqrt{\frac{n}{n(n+1)}}\\=\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)[/tex]
Ou seja, a última sequência é o próximo termo da sequência anterior. Ao invés de somarmos até o infinito, somaremos até um valor k que será levado ao infinito no fim dos cálculos:
[tex]\sum_{n=1}^{k}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=1-\frac{1}{\sqrt2}+\frac{1}{\sqrt2}-\frac{1}{\sqrt3}+\frac{1}{\sqrt3}-\dots+\frac{1}{\sqrt{k-1}}-\frac{1}{\sqrt k}[/tex]
Todos os valores intermediários se cancelam, exceto o primeiro e o último. Assim:
[tex]\sum_{n=1}^{k}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=1-\frac{1}{\sqrt k}[/tex]
Tomando o limite de k indo ao infinito:
[tex]\lim_{k\to\infty}\left(\sum_{n=1}^{k}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\right)=1-\lim_{k\to\infty}\frac{1}{\sqrt k}=1-0=1[/tex]
Portanto, concluímos que:
[tex]\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=1[/tex]
Saiba mais sobre séries telescópicas em: https://brainly.com.br/tarefa/53265013
#SPJ9
Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.