O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Junte-se à nossa plataforma de perguntas e respostas e obtenha informações precisas de especialistas em diversas áreas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

Explicação bem detalhada sobre como calcular polinômios

Sagot :

Para encontrar o grau de um polinômio devemos somar os expoentes das letras que compõem cada termo. A maior soma será o grau do polinômio. O expoente do primeiro termo é 3 e do segundo termo é 1. Como o maior é 3, o grau do polinômio é 3.

Um polinômio é uma expressão algébrica formada por monômios e operadores aritméticos. O monômio é estruturado por números (coeficientes) e variáveis (parte literal) em um produto, e os operadores aritméticos são: soma, subtração, divisão, multiplicação e potenciação. Para compreender melhor o que é um polinômio, veja alguns exemplos:

5

Coeficiente: 5

Parte literal: Qualquer variável elevada a zero, ou seja, x0 = 1 → 5 . x0

Operadores aritméticos: Multiplicação

2 . x . y

Coeficiente: 2

Parte literal: a . y

Operadores aritméticos: Multiplicação

3 . x . y + (4 . x : 2 . x)

Coeficiente: 3, 4 e 2

Parte literal: x .y e x

Operadores aritméticos: Adição, multiplicação e divisão.

{[(2 . x + 6 . x)2 – 5] + 3 . y – 1 . x}

Coeficiente: 1, 2, 3, 5 e 6

Parte literal: x e y

Operadores aritméticos: Adição, subtração, multiplicação e potenciação.

Classificação de Polinômios

Os polinômios podem ser classificados de acordo com a sua quantidade de termos:

Monômio: Possui um único produto com coeficiente e parte literal. Exemplos:

⇒ 2 . x . y

⇒ 6

⇒ 12 . x2

Binômio: É um polinômio que possui somente dois monômios. Exemplos:

⇒ 4 . x . y + 5 . x

⇒ 34 . z + 12 . x

⇒ 105 . z + 25 . z2

Trinômio: É um polinômio que possui somente três monômios. Exemplos:

⇒ 2 . x . y + 2x - y3

                   3

⇒ x. z4 + 25 – z . x

⇒ 2 . w + 12 . x – 5 . w2

Polinômio: possui uma infinidade de monômios. A sua expressão geral é dada por:

an xn+a(n-1) x(n-1)+...+a2 x2+a1 x+a

Grau de um Polinômio

Grau de polinômio com uma variável: Quando o polinômio possui somente uma variável (termo desconhecido), seu grau é dado pelo maior valor que o expoente da variável assume. Exemplos:

⇒ 2 . x2 + 3 . x

Variável: x

Maior expoente em relação à variável x: 2

Grau: Polinômio de 2° grau

⇒ 3 . z + 4 + 5 . z3

Variável: z

Maior expoente em relação à variável z: 3

Grau: Polinômio de 3° grau

Grau do polinômio com mais de uma variável: Quando o polinômio possui mais do que uma variável, para saber o seu grau, devemos somar os expoentes de cada monômio. A maior soma de expoentes determinará o grau. Exemplo:

3 + 12 . x . y – 2 . x . y2

Grau do monômio: x1 . Y1 → 1 + 1 = 2

Grau do monômio: x . y2 → 1 + 2 = 3

Da soma de expoentes de cada monômio, obtivemos que: para (x . y), o grau é 2; e para (x . y2), o grau é 3. Sendo assim, o polinômio (3 + 12 . x . y – 2 . x . y2) é de terceiro grau.

Tipos de Polinômio

Os polinômios podem ser de dois tipos: completo ou incompleto.

Polinômios completos: O polinômio será completo quando a ordem dos seus expoentes for decrescente (do maior para o menor número) e não faltar nenhum expoente na sequência. Veja:

⇒ 3. x5 + 2 . x4 – x3 + 12 . x2 + 5 . x1 – 2 . x0

Observe que os expoentes em relação à variável x seguem uma sequência decrescente, que é dada por: 5, 4, 3, 2, 1 e 0.

Polinômios incompletos: O polinômio será incompleto quando faltar algum número na sua sequência de expoentes. Veja:

⇒ 3. x5 + 5 . x1 – 2 . x0

A forma completa desse polinômio seria: 3. x5 + 0 . x4 – 0 . x3 + 0 . x2 + 5 . x1 – 2 . x0. Faltaram os expoentes em relação à variável x: x4, x3 e x2. Por esse motivo, o polinômio é incompleto.