O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.

Quanto vale o módulo do número complexo z = i 2014 − i 1987?.

Sagot :

O módulo de um número z é |z|, então |z|=|(i.2014-i.1987)|=27

O módulo de um número z é:

[tex]|z|=\sqrt{(z)^{2} }[/tex]

Logo,

[tex]|z|=\sqrt{(2014i-1987i)^{2} } =\sqrt{(2014^{2}i^{2}-2\cdot 2014 \cdot 1987i^{2}+1987^{2}i^{2} ) }[/tex]

Como o número imaginário é por definição:

[tex]i^{2}=(\sqrt{-1} )^{2} =(-1)[/tex]

Então, resolve-se:

[tex]|z|=\sqrt{(-2014^{2}+2\cdot 2014 \cdot 1987-1987^{2} ) }=\sqrt{(-4056196+8003636-3948169)}[/tex]

Assim, basta finalizar a resolução:

[tex]|z|=\sqrt{(8003636-4056196-3948169)} =\sqrt{(759)}=27[/tex]

Veja o módulo de número imaginário caso forem potências em: https://brainly.com.br/tarefa/4323715

#SPJ4

Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por usar o Sistersinspirit.ca. Continue nos visitando para encontrar respostas para suas perguntas.