Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.

Usando as letras do conjunto {a, b, c, d, e, f, g, h, i, j}, quantas senhas de 4 letras podem ser formadas de modo que duas letras adjacentes, isto é, vizinhas, sejam necessariamente diferentes.

Sagot :

7290 é o número de senhas que podem ser formadas sem que duas letras adjacentes se repitam

Explicação passo a passo:

Para resolver esta questão utilizaremos permutação simples. Para isto, precisamos primeiramente ver quantas possibilidades de letras temos. Logo perceberemos que são 10 letras disponíveis. Se a senha deve ser formada por 4 letras então teremos 10 possibilidades de letras para serem usadas na primeira posição. Na segunda posição, como não podemos repetir a letra que já foi utilizada na primeira posição, teremos apenas 9 possibilidades. O mesmo vale para a terceira e para a quarta posição, onde novamente a letra da posição anterior estará indisponível para uso, então temos 9 possibilidades para a terceira e para a quarta posição. Logo:

C = 10 × 9 × 9 × 9

C = 7290

Assim, concluímos que o número de combinações possíveis é de 7290.

Você pode continuar estudando permutações aqui: https://brainly.com.br/tarefa/191855

#SPJ11

Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.