O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Seja f(x) uma função definida por f ( x ) = ⎧ ⎪ ⎨ ⎪ ⎩ x 2 s e x < 2 x 1 s e x = 2 − x 2 2 x 4 s e x > 2 o limite lim x → 2 f ( x ) é igual a:.

Sagot :

A alternativa C é a correta. O limite da função f(x) para x → 2 é igual a 5. Podemos determinar a resposta correta a partir dos conhecimentos sobre limites laterais.

O enunciado completo da questão contém as alternativas:

  • a) -3
  • b) 2
  • c) 5
  • d) 0
  • e) 2

Limite Lateral

O limite lateral é uma consequência da definição de limite. Para que um limite exista, é necessário que a função seja contínua no ponto analisado.

Seja função f(x) dada na forma de sentenças:

[tex]\boxed{ f(x) = \left \{ {{\frac{2x^{2}-3x-2}{x-2}, se \: x < 2} \atop {x^{2}+1}, se \: x \geq 2} \right. }[/tex]

Para verificar o valor do limite da função quando x tende a 2, temos que determinar os limites laterais da função.

Se:

  • Os limites laterais forem iguais, isso determina que a função é contínua nesse ponto e que o limite existe;
  • Os limites laterais forem diferentes, a função não é contínua nesse ponto. Logo, o limite não existe.

Assim, determinando primeiro o limite lateral pela esquerda:

[tex]\lim\limits_{x \to 2^{-}} f(x) = \lim\limits_{x \to 2^{-}} \dfrac{2x^{2}-3x-2}{x-2} = \lim\limits_{x \to 2^{-}} \dfrac{2(x+\frac{1}{2})(x-2))}{x-2}[/tex]

Simplificando a expressão:

[tex]\lim\limits_{x \to 2^{-}} 2(x+\frac{1}{2})} = \lim\limits_{x \to 2} 2 \cdot (2+\frac{1}{2})} = 2 \cdot \frac{5}{2} = 5[/tex]

Determinando agora o limite lateral pela direita:

[tex]\lim\limits_{x \to 2^{+}} x^{2}+1 = \lim\limits_{x \to 2} 2^{2}+1 = 5[/tex]

Assim, o limite existe é igual a 5. A alternativa C é a correta.

Para saber mais sobre Limites, acesse: brainly.com.br/tarefa/1140277

Espero ter ajudado, até a próxima :)

#SPJ4