O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.
Sagot :
Resposta:
As raízes ou os zeros da equação x² - 2x + 2 estão no campo dos números complexos e correspondem a 1 + i e 1 - i.
Explicação passo-a-passo:
Trata-se de uma equação de segundo grau, do tipo ax² + bx + c = 0, onde a e b são os coeficientes literais e c é o termo livre.
Vamos iniciar com a Fórmula de Bhaskara:
[tex]\Delta = {b}^{2} - 4ac[/tex]
[tex]\Delta = {( - 2)}^{2} - 4.(1).(2) = \\ = 4 - 8 = \\ - 4[/tex]
Uma vez que o Discriminante ou Delta é negativo, não existem soluções no campo dos números reais, mas sim no campo dos números imaginários.
A unidade imaginária í² = -1 será utilizada para a solução da Equação:
[tex]\Delta = - 4 \\ \Delta = 4.( - 1) \\ \Delta = 4 {i}^{2} [/tex]
Agora, calculemos a raiz de Delta: a raiz quadrada de 4i² é 2i.
Finalmente, vamos calcular as raízes:
[tex]x = \frac{ - b + \sqrt\Delta}{2a} \\ x = \frac{ - ( - 2) + 2i}{2.1} = \\ x = \frac{2 + 2i}{2} \\ x = 1 + i[/tex]
Ou
[tex]x = \frac{ - b - \sqrt\Delta}{2a} \\ x = \frac{ - ( - 2) - 2i}{2.1} = \\ x = \frac{2 - 2i}{2} \\ x = 1 - i[/tex]
Portanto, as raízes ou os zeros da equação x² - 2x + 2 são 1 + i e 1 - i.
✅ Após resolver os cálculos, concluímos que o conjunto solução da referida função do segundo grau dependerá do seu conjunto universo. Desse modo, temos duas possíveis soluções:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \textrm{Se}\:f(x):\:\:\mathbb{R}\to\mathbb{R}\:\:\Longrightarrow S = \emptyset\:\:\:}}\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \textrm{Se}\:f(x):\:\:\mathbb{C}\to\mathbb{C}\:\:\:\Longrightarrow S = \{1 - i,\,1 + i\}\:\:\:}}\end{gathered}$}[/tex]
Seja a função:
[tex]\Large\displaystyle\text{$\begin{gathered} f(x) = x^{2} - 2x + 2\end{gathered}$}[/tex]
Cujos coeficientes são:
[tex]\Large\begin{cases} a = 1\\b = -2\\c = 2\end{cases}[/tex]
OBSERVAÇÃO: Para trabalhar com funções somos obrigados a informar o conjunto universo ou o conjunto domínio e o conjunto contradomínio. Pois, o conjunto solução da função será fortemente influenciado por esses conjuntos.
Para calcular as raízes da equação do segundo grau fazemos:
[tex]\Large\displaystyle\text{$\begin{gathered} x = \frac{-b\pm\sqrt{b^{2} - 4ac}}{2 a}\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \frac{-(-2)\pm\sqrt{(-2)^{2} - 4\cdot1\cdot2}}{2\cdot1}\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \frac{2\pm\sqrt{4 - 8}}{2}\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \frac{2\pm\sqrt{-4}}{2}\end{gathered}$}[/tex]
Como não foi informado o conjunto universo, tampouco o conjunto domínio da função, então podemos ter duas possíveis soluções para esta função:
- Se a função estiver definida nos reais, temos:
[tex]\LARGE\begin{cases} x' = \frac{2 - \sqrt{-4}}{2} = \nexists\\x'' = \frac{2 + \sqrt{-4}}{2} = \nexists\end{cases}[/tex]
Portanto o conjunto solução da função definida nos reais é:
[tex]\Large\displaystyle\text{$\begin{gathered} S = \emptyset\end{gathered}$}[/tex]
- Se a função estiver definida nos complexos temos:
[tex]\LARGE\begin{cases} x' = \frac{2 - \sqrt{-4}}{2} = \frac{2 - 2i}{2} = 1 - i\\x'' = \frac{2 + \sqrt{-4}}{2} = \frac{2 + 2i}{2} = 1 + i\end{cases}[/tex]
Portanto o conjunto solução da função definida nos complexos é:
[tex]\Large\displaystyle\text{$\begin{gathered} S = \{1 - i,\,1 + i\}\end{gathered}$}[/tex]
[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]
Saiba mais:
- https://brainly.com.br/tarefa/52570501
- https://brainly.com.br/tarefa/52844240
- https://brainly.com.br/tarefa/53143775
- https://brainly.com.br/tarefa/53209289
- https://brainly.com.br/tarefa/53239943
- https://brainly.com.br/tarefa/48443311
- https://brainly.com.br/tarefa/53323963
- https://brainly.com.br/tarefa/53338335
- https://brainly.com.br/tarefa/53364051
- https://brainly.com.br/tarefa/53364017

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Estamos felizes em responder suas perguntas. Volte ao Sistersinspirit.ca para obter mais respostas.