O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

Obtenha 5 números reais em p. A. Sabendo que sua soma é 5 e a soma de seus inversos é 563 63.

Sagot :

Uma das quatro possíveis progressões aritméticas será 1/5, 3/5, 1, 7/5, 9/5.

Para resolver este exercício vamos relacionar a progressão aritmética com a progressão harmônica dada.

Progressão artimética⠀

Inicialmente vamos escrever de forma estratégica os 5 termos desta P.A. da seguinte forma, sendo r a razão de um termo para o outro.

  • (a₃ - 2r), (a₃ - r), a₃, (a₃ + r), (a₃ + 2r)

Da soma destes termos obtemos que:

a₃ - 2r + a₃ - r + a₃ + a₃ + r + a₃ + 2r = 5

5a₃ = 5

a₃ = 5/5 = 1

Progressão harmônica

Da soma do inverso destes termos obtemos que:

1/(a₃ - 2r) + 1/(a₃ - r) + 1/a₃ + 1/(a₃ + r) + 1/(a₃ + 2r) = 563/63

1/(1 - 2r) + 1/(1 - r) + 1/1 + 1/(1 + r) + 1/(1 + 2r) = 563/63

1/(1 - 2r) + 1/(1 - r) + 1/(1 + r) + 1/(1 + 2r) - 500/63 = 0

Com um denominador comum podemos reescrever essa expressão (com algumas boas linhas de conta ou com o auxílio de alguma ferramenta eletrônica) da seguinte forma:

[tex]\large\blue{\text{$\bf \dfrac{-2000 r^4 + 1870 r^2 - 248}{63(r - 1)(r+ 1) (2r - 1)(2r + 1)} = 0$}}[/tex]

[tex]\large\blue{\text{$\bf -2000 r^4 + 1870 r^2 - 248 = 0$}}[/tex]

Podemos encontrar r através do método da substituição de variáveis (r² = k) ou fatorando o polinômio acima. Vamos fazer pelo segundo método:

[tex]\large\blue{\text{$\bf -2(5r - 2)(5r + 2)(40r^2 - 31) = 0$}}[/tex]

Sendo assim, observando as possibilidades para que esta expressão resulte em 0, temos 4 possíveis valores para r:

  • 5r - 2 = 0 ⇒ r = 2/5
  • 5r+ 2 = 0 ⇒ r = -2/5
  • 40r² - 31 = 0 ⇒ r = ±√(31/40)

Por fim, teremos 4 possíveis progressões aritméticas para a resposta:

  • (1 - 2·(2/5)), (1 - 2/5), 1, (1 + 2/5), (1 + 2·(2/5))
  • (1 - 2·(-2/5)), (1 - (-2/5)), 1, (1 + (-2/5)), (1 + 2·(-2/5))
  • (1 - 2√(31/40)), (1 - √(31/40)), 1, (1 + √(31/40)), (1 + 2√(31/40)))
  • (1 - 2(-√(31/40))), (1 - (-√(31/40))), 1, (1 + (-√(31/40))), (1 + 2(-√(31/40)))

Continue estudando sobre progressões aritméticas aqui: https://brainly.com.br/tarefa/38405971

#SPJ4

Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.