Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Dentre seis números positivos e oito negativos, dois números são escolhidos ao acaso (sem reposição) e multiplicados. Qual a probabilidade de que o produto seja positivo?.

Sagot :

43/91 ou 47,25% é a probabilidade de o produto ser positivo.

Resolução através da probabilidade e da combinação

Primeiro lembremos que a probabilidade é a razão entre o número de eventos de interesse (no caso é a quantidade de combinações de números cujo produto seja positivo) e o número total de eventos possíveis.

Assim, devemos começar nosso cálculo identificando os valores correspondentes a cada uma das condições. Assim, começaremos calculando o valor total de eventos. Como temos um total de 14 números (seis positivos mais oito negativos) que devem ser agrupados de dois a dois, utilizaremos a fórmula da combinação. Ficará assim:

C(n,p) = n!/p!(n-p)!

C(14,2) = 14!/2!(14-2)!

C(14,2) = 14!/2!12!

C(14,2) = (14 × 13 × 12!)/2!12! (aqui podemos eliminar o 12! tanto do numerador quanto do denominador)

C(14,2) = (14 × 13)/(2 × 1)

C(14,2) = 182/2

C(14,2) = 91

Assim, obtemos que o número total de combinações possíveis é de 91. Agora devemos identificar o número de eventos que atendem as condições propostas pelo enunciado.

O enunciado nos diz que o produto entre os dois números deve ser positivo. Esta condição só é possível combinando dois números positivos ou dois números negativos. Assim, devemos somar o número de combinações possíveis para números positivos e negativos. O total de combinações com números positivos será:

C(n,p) = n!/p!(n-p)!

C(6,2) = 6!/2!(6-2)!

C(6,2) = 6!/2!4!

C(6,2) = (6 × 5 ×4!)/2!4! (aqui podemos eliminar o 4! do denominador e do numerador)

C(6,2) = (6 × 5)/(2 × 1)

C(6,2) = 30/2

C(6,2) = 15

Assim, obtemos que são 15 combinações possíveis envolvendo os números positivos. Agora calculemos as combinações possíveis com números negativos:

C(n,p) = n!/p!(n-p)!

C(8,2) = 8!/2!(8-2)!

C(8,2) = 8!/2!6!

C(8,2) = (8 × 7 × 6!)/2!6! (elimina-se o 6!)

C(8,2) = (8 × 7)/2

C(8,2) = 56/2

C(8,2) = 28

Assim, sabemos agora que são 28 combinações possíveis envolvendo os números negativos. Agora, para chegarmos ao total de combinações cujo produto é positivo basta somarmos os dois valores obtidos acima, ou seja 28 e 15. Logo:

28 + 15 = 43

Deste modo, se temos 43 eventos de interesse, o total de eventos é 91 e a probabilidade é calculada pela razão do número de eventos de interesse pelo total de eventos, logo:

P = 43/91

Este número pode ser ainda representado por um percentual, para isto basta fazer o seguinte:

(43 ÷ 91) × 100 = 47,25%

Assim, a probabilidade de obtermos dois números cujo produto seja positivo é de 43/91 ou 47,25%.

Você pode continuar estudando com exercícios envolvendo combinação e probabilidade aqui: https://brainly.com.br/tarefa/38540209

#SPJ11