O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

Escreva a matriz a = (aij) do tipo 3x4 sabendo que: aij = 2i – 3j se i = j aij = 3i – 2j se i j.

Sagot :

Uma matriz do tipo 3x4  quer dizer que ela possui 3 linhas e 4 colunas. O termo utilizado  aij  se refere ao elemento que está em determinada linha e coluna. A matriz escrita é:

[tex]A=\begin{bmatrix} -1 & -1& -3 & -5 \\ ~~4 & -2 & ~~0 & -2 \\ ~~7 & ~~ 2 & -3 & ~~1 \end{bmatrix}[/tex]

Vamos primeiro dar um exemplo e escrever uma matriz ordenando onde está cada linha e coluna, por exemplo, a matriz linha    [tex]\left[\begin{array}{ccc}a_{11} &a_{12} &a_{13} \\\end{array}\right][/tex]   tem a posição linha 1 e coluna 1; linha 1 e coluna 2; linha 1 e coluna 3.

O enunciado quer que façamos uma matriz onde aij = 2i - 3j  se  i = j ou seja, no termo a₁₁  temos que i = j , já 1 = 1 então, o temos dessa posição será definido por a₁₁ = 2·1 - 3·i   →   a₁₁ = 2 - 3  →   a₁₁ = - 1.

Escrevendo a matriz:

[tex]\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & 3_{34} \end{bmatrix}[/tex]

Se i = j, temos aij = 2i – 3j. Então vamos definir os termos de  a₁₁ , a₂₂  e a₃₃.

[tex]a_{11}=2\cdot 1-3\cdot 1=2-3=\boxed{a_{11}=-1 } \\ \\ a_{22}=2\cdot 2-3\cdot 2=4-6=\boxed{a_{22}=-2 }\\ \\ a_{33}=2\cdot 3-3\cdot 3=6-9=\boxed{a_{33}=-3 }[/tex]

Se i ≠ j, temos aij = 3i – 2j. Então vamos definir os termos restantes.

[tex]a_{12}=3\cdot 1-2\cdot 2=3-4=\boxed{a_{12}=-1 }\\ \\ a_{13}=3\cdot 1-2\cdot 3=3-6=\boxed{a_{13}=-3 }\\ \\ a_{14}=3\cdot 1-2\cdot 4=3-8=\boxed{a_{13}=-5 }\\ \\ a_{21}=3\cdot 2-2\cdot 1=6-2=\boxed{a_{21}=4 }\\ \\ a_{23}=3\cdot 2-2\cdot 3=6-6=\boxed{a_{23}=0 }\\ \\ a_{24}=3\cdot 2-2\cdot 4=6-8=\boxed{a_{24}=-2 }\\ \\ a_{31}=3\cdot 3-2\cdot 1=9-2=\boxed{a_{31}=7 }\\ \\ a_{32}=3\cdot 2-2\cdot 2=6-4=\boxed{a_{32}=2 }\\ \\ a_{34}=3\cdot 3-2\cdot 4=9-8=\boxed{a_{34}=1 }[/tex]

Portanto, a matriz nas condições solicitadas fica assim:

[tex]A=\begin{bmatrix} -1 & -1& -3 & -5 \\ ~~4 & -2 & ~~0 & -2 \\ ~~7 & ~~ 2 & -3 & ~~1 \end{bmatrix}[/tex]

Aprenda mais sobre matrizes em:

https://brainly.com.br/tarefa/74705

#SPJ4

Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.