O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
As coordenadas do terceiro vértice são C =(1, 1+√3)
Geometria analítica - Distância de pontos
Seja A=(-1,1) , B=(3,1) e C(x, y) o terceiro vértice procurado. A distância AB é dada por:
[tex]d(A,B)=\sqrt{(-1-3)^{2}+(1-1)^{2} } = \sqrt{4^{2} } = 4[/tex]
Logo, o lado AB do triângulo ABC equilátero mede 4 e portanto, os demais lados AC e BC também medem 4.
Sabendo que o triângulo é equilátero podemos fazer a seguinte igualdade:
D(A,C) = D(B,C), logo:
[tex](x+1)^{2} +(y-1)^{2} = (x-3)^{2} +(y-1)^{2}[/tex]
podemos cancelar o termo (y - 1)² em ambos os termos, então:
[tex](x+1)^{2} = (x-3)^{2} \\\\x^{2} +2x+1=x^{2} -6x+9\\2x +6x=9-1\\\\8x=8\\x=1[/tex]
Logo, a coordenada x é igual a 1, então temos C(1, y), sabendo que o
triangulo ABC é equilátero, podemos fazer D(A,C) = 4:
[tex](1-(-1))^{2} +(y-1)^{2} =4^{2} \\ \\2^{2} + y^{2} -2y+1=16 \\\\y^{2}-2y-11=0[/tex]
Iremos aplicar a formula de Bhaskara para encontrar a variável y:
Cálculo de Delta:
Δ = b² -4.a.c = (-2)² - 4 . (1) . (-11) = 4 + 44 = 48
Δ = 48 → √Δ = √48 = ± 4√3
[tex]y1 = \frac{2 +4\sqrt{3} }{2} \\\\y1=1+2\sqrt{3}[/tex]
Portanto, as coordenadas do ponto C são C =(1, 1+√3)
Espero ter ajudado! = )
Para saber mais sobre Distância de pontos:
https://brainly.com.br/tarefa/288153
#SPJ11
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.