O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
a) Formou o conjunto de equações lineares abaixo:
[tex]$\left\{\begin{array}{lIll}8.000A + 10.000B+15.000C = 1.654.500\\12.500A + 13.000B + 11.000C =1.641.750\\15.000A+15.000B + 5.000C = 1.402.500\\16.000A+20.000B + 30.000C = 3.309.000\end{array}\right$[/tex]
b) A matriz de coefiecientes formada por esse sistema é:
[tex]M = \left[\begin{array}{cccc}8.000&12.500&15.000\\12.500&13.000&11.000\\15.000&15.000&5.000\\16.000&20.000&30.000\end{array}\right][/tex]
c) O determinante da matriz é D = 225.000
d) Os preços unitários dos produtos são:
- A = R$23,50
- B = R$48,10
- C = R$65,70
e) Se for vendido 5.000 unidades de cada produto, o valor da venda é R$686.500,00
Regra de Sarrus
Só podemos calcular o determinante de uma matriz quadrada, sendo assim, precisamos deixar a matriz de coeficientes como uma matriz quadrada, ou seja, com mesmo número de linhas e colunas. Para isso, eliminaremos a primeira linha.
[tex]M = \left[\begin{array}{cccc}12.500&13.000&11.000\\15.000&15.000&5.000\\16.000&20.000&30.000\end{array}\right][/tex]
Agora, podemos calcular o determinante da matriz utilizando a Regra de Sarrus. Para isso, vamos primeiro reescrever as duas primeiras colunas da matriz ao lado dela.
[tex]\left|\begin{array}{cccc}12.500&13.000&11.000\\15.000&15.000&5.000\\16.000&20.000&30.000\end{array}\right| \left|\begin{array}{cccc}12.500&13.000\\15.000&15.000\\16.000&20.000\end{array}\right|[/tex]
- Agora, vamos multiplicar as diagonais principais formadas e somá-las:
(12500 * 15000 * 30000) + (13000 * 5000 * 16000) + (11000 * 15000 * 20000)
5625 + 1040 + 3300
9965
- Faremos o mesmo passo para as diagonais secundárias:
(11000 * 15000 * 16000) + (12500 * 5000 * 20000) + (13000 * 15000 * 30000)
2640 + 1250 + 5850
9740
- Agora, subtraimos o valor das diagonais principais pelo valor das diagonais secundárias:
D = 9965 - 9740
D = 225
Como dividimos tudo por 1000 para facilitar os cálculos, devemos multiplicar por 1000 novamente o resultado final. Sendo assim:
D = 225.000
Método de Cramer
Para resolver pelo método de Cramer, devemos substituir as colunas pelos termos independentes e calcular o determinante da matriz dessa forma, posteriormente, dividimos os valores de determinantes encontrados nas substituições pelo determinante da matriz original:
- Substitui na matriz a primeira coluna pelos termos independentes para encontrar o Da:
[tex]\left|\begin{array}{cccc}1.641.750&13.000&11.000\\1.402.500&15.000&5.000\\3.309.000&20.000&30.000\end{array}\right| \left|\begin{array}{cccc}1.641.750&13.000\\1.402.500&15.000\\3.309.000&20.000\end{array}\right|[/tex]
Da = (1641750 * 15000 * 30000) + (13000 * 5000 * 3309000) + (11000 * 1402500 * 20000) - (11000 * 15000 * 3309000) - (1641750 * 5000 * 20000) - (13000 * 1402500 * 30000)
Da = 738787,5 + 215085 + 308550 - 545985 - 164175 - 546975
Da = 5287,5
Da = 5.287.500
- Substitui na matriz a segunda coluna pelos termos independentes para encontrar o Db:
[tex]\left|\begin{array}{cccc}12.500&1.641.750&11.000\\15.000&1.402.500&5.000\\16.000&3.309.000&30.000\end{array}\right| \left|\begin{array}{cccc}12.500&1.641.750\\15.000&1.402.500\\16.000&3.309.000\end{array}\right|[/tex]
Db = (12500 * 1402500 * 30000) + (1641750 * 5000 * 16000) + (11000 * 15000 * 3309000) - (11000 * 1402500 * 16000) - (12500 * 5000 * 3309000) - (1641750 * 15000 * 30000)
Db = 525937,5 + 131340 + 545985 - 246840 - 206812,5 - 738787,5
Db = 10.822.500
- Substitui na matriz a terceira coluna pelos termos independentes para encontrar o Dc:
[tex]\left|\begin{array}{cccc}12.500&13.000&1.641.750\\15.000&15.000&1.402.500\\16.000&20.000&3.309.000\end{array}\right| \left|\begin{array}{cccc}12.500&13.000\\15.000&15.000\\16.000&20.000\end{array}\right|[/tex]
Dc = (12500 * 15000 * 3309000) + (13000 * 1402500 * 16000) + (1641750 * 15000 * 20000) - (1641750 * 15000 * 16000) - (12500 * 1402500 * 20000)- (13000 * 15000 * 3309000)
Dc = 620.437,5 + 291720 + 492525 - 394020 - 350625 - 645255
Dc = 14.782.500
Agora, vamos dividir os determinantes Da, Db e Dc pelo determinante D da matriz e encontraremos os valores a, b e c:
- a = Da / D = 5.287.500 / 225.000 = 23,5
- b = Db / D = 10.822.500 / 225.000 = 48,1
- c = Dc / D = 14.782.500 / 225.000 = 65,7
5000 peças vendidas
Para determinar o valor se 5000 peças de cada fosse vendido, basta fazer:
5000A + 5000B + 5000C = X
5000 * 23,5 + 5000 * 48,10 + 5000 * 65,7 = X
117500 + 240500 + 328500 = x
x = 686.500
Para mais exercícios sobre determinantes acesse:
brainly.com.br/tarefa/4055210
brainly.com.br/tarefa/10839129
#SPJ1
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.