Answered

Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Resolva a equação sen2 x+ 4cos x = - 4,
com 0 ≤ x ≤ 2π e assinale a alternativa com a resposta correta:

A) 0
B) π
C) /2
D) 3/2
E) 2π


Sagot :

[tex]\displaystyle \sf sen^2x+4cos(x)=-4\\\\ \underline{\text{usando a rela{\c c}{\~a}o fundamental }}: \\\\ sen^2x+cos^2(x)=1 \\\\ sen^2(x)=1-cos^2(x) \\\\ \underline{Da{\'i}}}: \\\\ sen^2(x)+4cos(x)=-4 \\\\ 1-cos^2(x)+4cos(x) = -4 \\\\ -cos^2(x)+4cos(x)+5 = 0 \ \ \ \cdot (-1) \\\\ cos^2(x)-4cos(x)-5 = 0 \\\\ cos^2(x)-4cos(x) -5+9 = 9 \\\\ cos^2(x) -4cos(x)+4=9 \\\\\ \left(cos(x)-2\right)^2=9 \\\\\ cos(x)-2 = \pm 3 \\\\ cos(x) = 3+2 \to cos(x) = 5 \ (\text{N{\~a}o conv{\'e}m)} \\\\[/tex]

[tex]\displaystyle \sf cos(x) = -3+2 \to cos(x) = -1 \to \huge\boxed{\sf x = \pi }\checkmark[/tex]

letra B