O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.

Pelo Teorema de Fubini podemos inverter a ordem de integração, dependendo do formato da região ou sólido de integração. No caso de integral dupla, chamamos de integrais do tipo 1 ou tipo 2. O importante é que a última integral tenha em seu domínio de integração apenas constantes, ou seja, seja feito num intervalo como as integrais simples. Utilizando o Teorema de Fubini, calcule a área da região apresentada na figura a seguir. Justifique cada etapa da sua resolução.

Pelo Teorema De Fubini Podemos Inverter A Ordem De Integração Dependendo Do Formato Da Região Ou Sólido De Integração No Caso De Integral Dupla Chamamos De Inte class=

Sagot :

Resposta:

Utilizando integral dupla, concluímos que, a área da região apresentada é igual a 10 unidades de área.

Área da região

Observe que a região apresentada pode ser separada em duas regiões para facilitar o cálculo dos limites de integração. A primeira região será a que possui valores de x pertencentes ao intervalo [-2, 0] e os valores de y entre as retas y = 0 e y = -0,5x + 2. Dessa forma, teremos que a integral interna será calculada em relação a variável y, pois os limites de integração dessa variável depende de x:

A segunda região possui valores de x entre 0 e 2 e valores de y entre as retas y = -x e y = -0,5x + 2. Dessa forma, a área associada a região 2 é dada pela integral dupla:

Somando os resultados obtidos, temos que, a área da região apresentada é 5 + 5 = 10 unidades de área.

Explicação passo a passo: