Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.
Sagot :
[tex]\displaystyle \sf (a+b+c)^2 > 3(ab+bc+ac)\\\\ a^2+b^2+c^2+2(ab+bc+ac) > 3(ab+bc+ac)\\\\ a^2+b^2+c^2 -(ab+bc+ac) > 0 \\\\ a^2+b^2+c^2-ab-bc-ac > 0 \ \ x( 2) \\\\ 2a^2+2b^2+2c^2-2ab-2bc-2ac > 0 \\\\ \underbrace{\sf a^2-2ab+b^2}_{(a-b)^2} + \underbrace{\sf a^2-2ac+c^2}_{(a-c)^2} +\underbrace{\sf b^2-2bc+c^2}_{(b-c)^2} > 0 \\\\\\ \underbrace{\sf (a-b)^2}_{\geq 0 } +\underbrace{\sf (a-c)^2}_{\geq 0 } +\underbrace{\sf (b-c)^2}_{\geq 0 } > 0 \\\\\\[/tex]
[tex]\displaystyle \sf if \ a,b\ e \ c \ are \ unequal \to\ a\neq b \neq c \ \ so : \\\\ \underbrace{\sf (a-b)^2}_{ > 0 } +\underbrace{\sf (a-c)^2}_{ > 0 } +\underbrace{\sf (b-c)^2}_{ > 0 } > 0 \\\\\\ \huge\boxed{\sf proved}\checkmark[/tex]
Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.